

Contents

Features 3
Specifications 4
Circuit Description 6
Panel Controls and Their Functions 8
Operating Instructions 10
Applications 12
Maintenance 15
Adjustment 16
Caution 17
Parts List 18
PC Board 21
Schematic Diagram 22

Features

- All solid-state circuitry ensure extreme high stability, minimum warm-up time and less power consumption.
- High reliability with adoption of direct coupled circuits throughout the entire stage.
- Compact styling with vertical type panel for easy operation.
- Frequency dial scale calibrated with single-scale graduations for frequency range 10 Hz to 1 MHz selectable in 5 ranges.
- High output design; more than 7 V rms at no load and more than 3.5 V rms at 600Ω. Output level is fully adjustable with a 10 dB step, 6 range attenuator and a level indicator.
- Low output impedance of 600Ω. The attenuator provides accuracy of $\pm 1 \mathrm{~dB}$ at 600Ω load.
- Sine and Square waves easily available.
- Synchronizing input terminal.
- Extremely high stability against variation of power source.

Specifications

Frequency Range	$\begin{aligned} & \times 1 \text { range; } 10 \mathrm{~Hz}-100 \mathrm{~Hz} \\ & \times 10 \text { range; } 100 \mathrm{~Hz}-1 \mathrm{KHz} \\ & \times 100 \text { range; } 1 \mathrm{KHz}-10 \mathrm{KHz} \\ & \times 1 \mathrm{~K} \text { range; } 10 \mathrm{KHz}-100 \mathrm{KHz} \\ & \times 10 \mathrm{~K} \text { range; } 100 \mathrm{KHz}-1 \mathrm{MHz} \end{aligned}$
Frequency accuracy	$\pm(3 \% \pm 1 \mathrm{~Hz})$
(Sine Wave Characteristics)	
Output voltages (no-load)	7 V rms or more
Frequency Characteristics (reference freq. 1 KHz)	$10 \mathrm{~Hz}-1 \mathrm{MHz}, \pm 1 \mathrm{~dB}$
Distortion Factor	$\begin{aligned} & 400 \mathrm{~Hz}-20 \mathrm{KHz}, 0.1 \% \text { or less } \\ & 100 \mathrm{~Hz}-100 \mathrm{KHz}, 0.3 \% \text { or } \\ & \text { less (x } 10 \text { range for } 100 \mathrm{~Hz} \text {) } \\ & 50 \mathrm{~Hz}-200 \mathrm{KHz}, 0.5 \% \text { or less } \\ & 20 \mathrm{~Hz}-500 \mathrm{KHz}, 1 \% \text { or less } \\ & 10 \mathrm{~Hz}-1 \mathrm{MHz}, 1.5 \% \text { or less } \end{aligned}$
(Square wave characteristic)	
Output Voltage (no load)	10 V p-p or more
Sag:	5% or less at 50 Hz
Rise and Fall times:	200ns or less
Overshoot:	2% or less (at 1 KHz , max output)
Duty ratio:	$50 \% \pm 5 \%$ (at 1 KHz , max output)
(External Synchronization Characteristics)	
Synchronization range:	$\pm 1 \mathrm{~V}$
Max, allowable input voltage:	10 V rms
Input impedance:	Approx 10K Ω
Output impedance:	$600 \Omega \pm 10 \%$
Output attenuator:	$0 \mathrm{~dB},-10 \mathrm{~dB},-20 \mathrm{~dB},-30 \mathrm{~dB},-40 \mathrm{~dB}$, and -50 dB in 6 steps (accuracy: $\pm 1 \mathrm{~dB}$ at 600Ω load.

(Stability against power source voltage variation (with respect to variation of $100 \mathrm{~V} \pm 10 \%$))

Frequency drift:
Output Voltage Variation:
Operating Temperature:
Power Requirements:
Power Consumption:
External View:
Dimensions:

Within $\pm 5 \%$
Within $\pm 0.5 \mathrm{~dB}$
$0-50^{\circ}$ (relative humidity less than 90\%)
AC $100 \mathrm{~V}(120 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V), $50-$
60 Hz
5 Watts
See Fig. 2 on page 9
Casing 128(W) x 238(D) x 190(H)mm.
Overall (including knobs); 130(w) x

Weight:
 Accessories:

268(D) x 215(H)mm.

2.9kg.

Power cord (1)
Output cord; one red and black test cord with basket clip and antenna plug.
Banana plug; red (1) and black (1)
Fuse; 0.125A (2) and 0.2A (2)
Instruction Manual (1)

Circuit Description

1. Summary

When reading the following descriptions, refer to the block diagram (Fig. 1) and the schematic diagram.

The sine-wave signal generated by the Wien bridge oscillator circuit is fed through the WAVE FORM selector switch set at the " ~ " position to the OUTPUT control, by means of which it is adjusted to any desired voltage.

If the WAVE FORM switch is in the " Ω " position, the sine-wave signal is shaped into the square wave and the voltage is also adjusted by the OUTPUT control.

The signal voltage thus adjusted is applied to the output circuit, where its impedance is appropriately converted, and then delivered through an output attenuator to the output terminal. The attenuator provides selectable attenuations of 0 dB through -50 dB in 10 dB steps at 600Ω of output impedance.

2. Wien Bridge Oscillator Circuit

The Wien bridge oscillator circuit elements consist of the resistance elements, which may be switched over for 5 ranges by the FREQ. RANGE switch, and the variable capacitor controlled by the FREQUENCY dial.

These elements provide means to vary the oscillating frequency continuously over 10 times its frequency on one range, thus determining any desired frequency within the entire frequency range from 10 Hz to 1 MHz .

The amplifier circuit for the oscillator circuit is composed of a 2-stage differential amplifier and an output stage, employing an DC amplifier circuit. The first stage is a high input impedance circuit with FET while the driver stage is a wide band, high amplification type circuit with PNP transistors featuring high cut-off frequency. The output stage is a SEPP circuit using complementary transistors.

The output voltage is fed back with positive polarity through the oscillator elements to form an oscillating circuit, while it is also fed back with negative polarity through the non-linear thermistor to stabilize the amplitude.

3. Square Wave Shaping Circuit

The square wave shaping circuit is a Schmidt-trigger circuit in which the sine wave signal from the oscillator circuit is shaped into a square wave. It is composed of an emitter coupled Schmidt-trigger circuit and a buffer amplifier, thus providing sufficient rising and falling characteristics.

4. Output Circuit

The output circuit converts the impedance of signal from the OUTPUT control and feeds the signal to the output attenuator at a low impedance. It is a SEPP-OCL circuit employing complementary transistors to provide sufficiently low output impedance characteristics over the range from DC to 1 MHz .

5. Output Attenuator

The 6-position output attenuator selects attenuations of 0 dB to -50 dB in 10 dB steps. At the OdB position with the OUTPUT control turned fully clockwise, the output voltage (sine wave at no-load time) is more than 7 V rms.

The output impedance is rated for 600Ω and the attenuation accuracy is as high as $\pm 1.0 \mathrm{~dB}$ at a 600Ω load.

6. Power Supply

The Power supply circuit is powered by AC (100V, 120 V or 220 V) and delivers DC $\pm 22 \mathrm{~V}$ sufficiently stabilized by large capacity smoothing capacitors ($2200 \mathrm{mF} \times 2$) and a voltage stabilizer.

Panel Controls and Their Functions

The table below describes the functions of panel controls. Refer to the panel diagram on page 9. (Fig 2)

FRONT PANEL

This lamp (light emitting diode) lights when POWER switch (2) is ON.

2. POWER

Pushbutton type switch turns on the power when pressed.
3. ATTENUATOR

6 -position output attenuator selects attenuations of 0 dB to -50 dB in 10 dB steps.

4. OUTPUT

Output terminal used for both sine wave and square wave. The marking indicates GND (case grounded).

5. WAVE FORM

Output waveform selector switch. When pressed to "~", output signal is sine wave. When pressed to " \rfloor " the signal is square wave.
6. FREQ. RANGE

Oscillating frequency range selector switch which selects the ranges in 5 steps as follows:

```
X 1 10Hz-100Hz
x10 100Hz- lkHz
x100 1kHz-10kHz
x 1K 10KHz-100KHz
x 10K 100KHz-1MHz
```

7. Amplitude

Amplitude adjuster to continuously vary the amplitude of output voltage.
8. FREQUENCY DIAL

This dial adjusts oscillating frequencies. Frequencies can be read by multiplying the reading on the dial scale by magnification of FREQ.RANGE.
9. DIAL SCALE

This dial is calibrated with graduations of 10-100 to indicate oscillating frequencies.
10. DIAL POINTER

This pointer indicates frequencies on the dial scale.

REAR PANEL
11. Sync.

External synchronizing signal input terminals fir GND for connection of synchronizing signal to AG-203.
12. Fuse

Fuse fore Power supply.
13. A.C. Connector

For connection of the supplied A.C. connector.

14. Power Voltage Selector.

This selector is preset to 240 V position. A.C. power of 100 V , 120 V or 220 V may be used by changing the position of the selector.

Operating Instructions

1. Start-up

First check that the fuse (12) and the power voltage selector (14) are in the normal positions, then connect the supplied AC power cord to your AC outlet. Press the power switch (2) and the pilot lamp (1) will light indicating that the unit is ready for operation. Allow 2 or 3 minutes for the unit to warm up so that it is stabilized.

2. Waveform Selection

Press the WAVE FORM switch (5) to the " ~" position to obtain sine waves. Press the switch to the " Ω " position for square waves.

3. Frequency Selection

First set the FREQ.RANGE switch (6) to the desired range, then set the frequency dial (8) so that the dial pointer (10) indicates your frequency.

Example: Suppose you want to select a frequency of 1.5 kHz , then proceed as follows:

1. Set FREQ RANGE switch (6) to $\times 100$

2. By using the frequency dial, set the dial pointer (10) to " 15 " on the dial scale.

The frequency thus selected is:

$$
15 \times 100=1500(\mathrm{~Hz}=1.5(\mathrm{kHz})
$$

4. Adjustment of Output Voltage

The output voltage from OUTPUT terminal (4), be it sine wave or square wave, can be continuously varied by AMPLITUDE (7) and stepped down by ATTENUATOR (3).

Example: To adjust output voltage to 10 mV rms, proceed as follows:

1. Connect a voltmeter capable of measuring AC 1 V rms to OUTPUT terminal (4).
2. Set ATTENUATOR (3) to OdB and then adjust AMPLITUDE (7) until the voltmeter indicates 1 V rms. A voltage of 1 V rms will appear at OUTPUT terminal (4).
3. Set ATTENUATOR (3) to -40 dB . The voltmeter indicates about 0 V , while a voltage of 10 mV rms appears at OUTPUT terminal (4).
4. Use of Synchronizing Input Terminal By applying an external sine wave signal to SYNC terminal (11), the oscillating frequency of AG-203 can be synchronized to the external signal. The synchronizing range is increased in proportion as the input voltage is increased as shown in Fig. 3, indicating that the synchronizing range is about ± 1 $\%$ per input voltage of 1 V .

Example: Suppose that the input signal voltage is 1 V rms and the oscillating frequency of AG-203 is between 990 Hz and 1010 Hz
$(1 \mathrm{kHz} \pm 1 \mathrm{kHz} \times 1 \% / \mathrm{V} \times 1 \mathrm{~V}=1 \mathrm{kHz} \pm 1 \mathrm{kHz}$ x 0.01), the frequency can be synchronized with 1 kHz of the input signal.

Note that too high a synchronizing signal voltage will affect the amplitude and

Fig. 3
distortion factor, and care must therefore be taken when the signal voltage is higher than 3 V rms. Also, note that if the synchronizing signal is largely deviated from the frequency of AG-203, the synchronization is pulled out which affects the distortion factor. It is therefore advisable that the oscillating frequency be first synchronized with a low input signal voltage (less than 1 V rms) and then the voltage be increased.

Applications

1. Using as Sine Wave Oscillator

AG-203 can be used as a sine wave oscillator as outlined below.
1.1 Since the unit features low distortion factor, it can be used for measurement of distortion characteristic of amplifier.
1.2 Since the unit features wide bandwidth, it can be used for measurement of frequency characteristic of amplifier.
1.3 The built-in high accuracy attenuator permits measurement of amplifier gain.
1.4 Can be used as a signal-source of impedance bridge.

2. Measurement of Amplifier Gain

An example of measurement of amplifier gain is described below.
First connect AG-203, amplifier to be tested and AC volt-meter as shown in Fig. 4.

1. Adjust ATTENUATOR (3) and AMPLITUDE (7) so that AC volt-meter indicates the rated output (supposed to be 1 V in this example) of the amplifier. To facilitate the measurement, it is advisable to set ATTENUATOR (3) as low as possible. Assume that ATTENUATOR (3) is set -50 dB for the rated output.
2. Disconnect the amplifier and connect the AC volt-meter to AG-203 to measure the output voltage. Note that the use of ATTENUATOR (3) eliminates the need for connecting a high sensitivity voltmeter. If ATTENUATOR (3) is set to 0 dB and the voltmeter indicates 2 V , it means that the input voltage of the amplifier is 50 dB below 2 V . Therefore, the gain obtained is as follows:

$$
\begin{aligned}
& 50 \mathrm{~dB}+20 \log _{10} \frac{1 \mathrm{~V}}{2 \mathrm{~V}} \mathrm{~dB} \\
& =50 \mathrm{~dB}-6 \mathrm{~dB} \\
& =44 \mathrm{~dB}
\end{aligned}
$$

3. Measurement of Phase Characteristic

Connect AG-203 and an oscilloscope to the amplifier to be tested as shown in Fig. 5. If there is no phase shift about the output signal of the amplifier, the oscilloscope will display a straight line as shown in Fig. 5A. If the straight line on the oscilloscope is curved at its top and bottom sections as shown in Fig. 5B, it indicates that the output signal of amplifier is suffering from an amplitude distortion. In this case, reduce the output level of AG -203 a little to vary the frequency. This causes the straight line on the oscilloscope to expand gradually to turn into an ellipse. By utilizing the configuration of this ellipse, the phase shift can be calculated as follows:

First, measure the maximum horizontal deflection and suppose that this deflection is " X " and that the section at which the ellipse crosses the horizontal axis is " x ", as shown in Fig. 6. And, the phase shift angle θ is given by the following.

$$
\operatorname{Sin} \Theta=\frac{x}{X}
$$

Find θ from the table of trigonometric functions and the value obtained gives the angle of phase shift.

4. Using as Square Wave Oscillator

AG-203 features excellent rising and falling characteristics (120 ns as standard characteristic). It has no coupling capacitors in the output stage, so the sag (deflection of top section) is as low as 5% at 50 Hz . By applying such a good square wave to an amplifier input, various characteristics of amplifier can be observed on an oscilloscope. To test an amplifier, proceed as follows:

1. Connect AG-203, an amplifier to be tested and an oscilloscope as shown in Fig. 7.
2. Press WAVE FORM (5) to the " $_$" position to obtain square waves of appropriate frequency and amplitude.
3. During the test, change the frequency as necessary. The relationship between waveforms and amplifier characteristics is shown in Fig. 8.

Maintenance

1. Removal of Case

Remove 2 screws each on the left, right and top sides with a Phillips head screwdriver. Lift the case at the underside until the case is fully removed (see Fig. 9).

2. Mounting the Case

Place the case so that the underside of it is left open a little. Tighten 6 screws uniformly. Do not use excessive force when tightening, as it will damage the screws and the vinyl leather on the case.

28)

Fig. 9

3. Replacement of Fuse

Open the fuse holder with a Phillips head screwdriver. Replace the fuse with one having the same rating.

Adjustments

All the circuits of AG-203 are factory adjusted prior to shipment and no further adjustments are required, except for the frequency dial which may need readjustment for proper tracking. Although this dial is also pre-adjusted at the factory. If readjustment is required, proceed to the adjusting work using an accurate test equipment. Note that the power supply voltage must be calibrated before making adjustment (see Fig. 10).

1. Connect a frequency counter to OUTPUT terminal (4).
2. Remove the knob of the frequency dial, then loosen the set-screws on the dial.
3. Set FREO. RANGE switch (6) to $X 100$ and adjust the shaft of the dial until the frequency counter indicates 1 kHz .
4. Set the dial to " 10 " position and tighten the setscrews, making sure that the shaft stays as it is. Check that the frequency counter is indicating 1 kHz , then secure the knob to the dial.

Fig. 10
5. Set the dial to " 10 " position and adjust TC101 for a reading of 10 kHz on the frequency counter.
6. Set FREQ. RANGE switch (6) to $X 1$ and the frequency dial (8) to "10" position. Adjust VR101 until the frequency counter indicates 10 Hz .
7. Set FREQ. RANGE switch (6) to X 10k and the frequency dial (8) to " 100 " position. Adjust TC102 for 1 MHz on the frequency counter.

Caution

1. Do not apply voltage of more than 10 V rms to OUTPUT terminal and SYNC terminal. If a DC voltage is to be used, it should be applied through a capacitor.
2. Connecting leads should be as short as possible. Use of a long shield cable will affect high frequency amplitude characteristics because of its own line capacitance. Also, use of a long unshielded lead will introduce noise and cause other troubles.
3. Power supply voltage:

AG-203 is preset to operate on AC 240 V , however, this should be checked before connecting AC power cord. If your local AC voltage is other than 240 V , change the position of the power voltage selector according to the instructions on the rear panel. Note that operating voltage is within $\pm 10 \%$ of the rated voltage.
4. Output waveform after switching on:

Because of the use of direct coupled circuits throughout the entire stage, a DC voltage will appear at OUTPUT terminal for a while when the power is on. This DC voltage will disappear about 20 to 30 seconds later when normal output waveform is obtained.
5. Output voltage variation due to ambient temperature: A thermistor is used to control the oscillating voltage. Care should be used when operating AG-203 in atmosphere of excessive temperature variation because the thermistor is normally affected by ambient temperature variation.
6. Be sure to press only one FREQ RANGE switch. If two switches are pressed at-the same time or all the switches are in released positions, your AG-203 will not work properly.
7. Impedance matching:

Any related equipment to be connected to OUTPUT terminal should be checked to see that its input impedance matches the output impedance (600Ω) of AG-203.
8. Effect of external noise:

Excessive noise from an outside source may affect the external synchronizing input terminal. If such a noise is evident, short this terminal (output voltage amplitude will somewhat deviate in this case).

Parts List

Ref No.	Parts No.	Description
Miscellaneous		
-	A01-0809-22	Case
-	A10-1409-13	Chassis
-	A20-2708-03	Frame
-	A21-0811-03	Ornament Panel
-	A23-1606-03	Rear Panel
-	A40-0703-13	Bottom Plate
-	B07-0189-04	Push Escutcheon
-	B07-0190-04	Push Escutcheon
-	B20-0804-14	Graticule
-	B23-0601-04	Pointer
-	B30-0902-15	LED Group
-	B40-2703-04	Serial Plate
-	B41-0702-14	Voltage Indication Panel
-	B50-2818-00	Instruction Manual
VC1a, b	C01-0154-15	Variable Capacitor
-	D13-0501-15	Bevel Gear (1)
-	D13-0502-15	Bevel Gear (2)
-	D21-0061-04	Shaft
-	D23-0061-04	Bearing
-	E03-0201-15	Power Connector
-	E08-1081-05	Voltage Selector (jack)
-	E09-0681-05	Voltage Selector (plug)
-	E18-0106-05	Terminal, type banana
-	E18-0107-05	Terminal, type banana (black)
-	E21-0209-13	Pair terminal
-	E30-0095-05	Cord (black)
-	E30-0096-05	Cord (red)
-	E91-0003-05	Mini-gator clip with black insulator
-	E91-0004-05	Mini-gator clip with red insulator
-	E91-0016-05	Banana tip (black)
-	E91-0015-05	Banana tip (red)
-	F05-2012-05	Fuse (0.2A) x 2
-	F05-1218-05	Fuse (0.125A) x 3
-	F10-1511-04	Shield Plate
-	G01-0901-04	Spring
-	H01-2812-04	Packing Case (individual packing)
-	H10-2802-02	Packing material, foamed styrene
-	H20-1703-04	Protection cover
-	H25-0801-04	Polythene bag

Ref No.	Parts No.	
-	J03-0003-04	Rubber leg
-	J13-0033-15	Fuse Holder
-	J21-2820-04	Variable Capacitor mounting
hardware		
Switch Mounting hardware		
-	J21-2877-04	Hall Brush
-	J42-0038-04	Krip
-	K01-0058-25	Knob (push)
-	K21-0282-04	Knob (push) (orange)
-	K21-0302-04	Knob K21-0803-04 K21-0807-04
Dial Knob		
Knob (push) (blue)		
-	L01-9026-05	Power Transformer
	S40-2506-05	Push Switch
	X65-1160-00	Main unit (Printed circuit
board)		

Parts List of X65-1160-00

Ref No.	Parts No.	Description			
Capacitor					
C101	CM93B2A120J	Mica	12pF		
C102	MC93BD2A080D	Mica	8 pF		
C103	CM93BD2A100D	Mica	10pF		
C104	CM93BD2A100D	Mica	10pF		
C105	CM93BD2A510J	Mica	51pF		
C106	CE04W1E470	Electrolytic	470 FF 25 V		
C107, C108	CE04W1V222	Electrolytic	2200 uF 35 V		
C109, C110	CQ93M1H104K	Mylar		0.1 uF	
C111, C112	CE04W1E101	Electrolytic	100 FF 25 V		
C113	CH93BD2A040D	Mica	$\begin{aligned} & 4 \mathrm{pF} \\ & 33 \mathrm{pF} \end{aligned}$		
C114	CC45SL1H330J	Ceramic			
C116	CC45SL1H101J	Ceramic	100pF		
C117	CC45CH1H470J	Ceramic	47pF		
C201	CK45D1H152M	Ceramic	1500pF $\pm 20 \%$		
Resistor					
R101, R102	RN14BY2E3601F	Metal	$3.6 \mathrm{~K} \Omega$	$\pm 1 \%$	1/4W
R103, R104	RN14BY2E3602F	Metal	$36 \mathrm{~K} \Omega$	$\pm 1 \%$	1/4W
R105, R106	RN14BY2E3603F	Metal	$360 \mathrm{~K} \Omega$	$\pm 1 \%$	1/4W
R108, R108	R92-0796-05	Metal	$3.6 \mathrm{M} \Omega$	$\pm 1 \%$	$11 / 2 \mathrm{~W}$
R109, R110	R92-0797-05	Metal	$36 \mathrm{M} \Omega$	$\pm 1 \%$	112W
R111, R112	RD14BB2E222J	Carbon	$2.2 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R113	RD14BB2E121J	Carbon	120Ω	$\pm 5 \%$	1/4W
R114	RD14BB2E183J	Carbon	$18 \mathrm{~K} \Omega$	$\pm 5 \%$	1/4W
R115	RD14BB2E103J	Carbon	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	1/4W
R116	RD14BB2E561J	Carbon	560Ω	$\pm 5 \%$	1/4W
R117, R118	RD14BB2E470J	Carbon	47Ω	$\pm 5 \%$	1/4W
R119	RD14BB2E820J	Carbon	82Ω	$\pm 5 \%$	1/4W
R120	RD14BB2E682J	Carbon	$6.8 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R121, R122	RD14BB2E470J	Carbon	47Ω	$\pm 5 \%$	1/4W
R123	RD14BB2E820J	Carbon	82Ω	$\pm 5 \%$	1/4W
R124	RD14BB2E103J	Carbon	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$

Ref No.	Parts No.	Description			
R125, R126					
R127, R146	RD14BB2E103J	Carbon	10K Ω	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R128, R129	RD14BB2E100J	Carbon	10Ω	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R131	RD14BB2E103J	Carbon	10K Ω	$\pm 5 \%$	$11 / 4 W$
R132	RD14BB2E473J Not Used	Carbon	47K Ω	$\pm 5 \%$	$11 / 4 \mathrm{~W}$
R134	RD14BB2E562J	Carbon	$5.6 \mathrm{~K} \Omega$	$\pm 5 \%$	1/4W
R135	RD14BB2E682J	Carbon	$6.8 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R136	RD14BB2E362J	Carbon	$3.6 \mathrm{~K} \Omega$	$\pm 5 \%$	$11 / \mathrm{W}$
R137	RD14BB2E562J	Carbon	$5.6 \mathrm{~K} \Omega$	$\pm 5 \%$	$11 / 4 W$
R138	RD14BB2E122J	Carbon	$1.2 \mathrm{~K} \Omega$	$\pm 5 \%$	$11 / 4 W$
R139	RD14BB2E302J	Carbon	3.0K Ω	$\pm 5 \%$	$11 / 4 W$
R140	RD14BB2E103J	Carbon	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	$11 / 4 W$
R141	RD14BB2E222J	Carbon	$2.2 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R142	RD14BY2H220J	Carbon	22Ω	$\pm 5 \%$	1/2W
R143	RD14BB2E122J	Carbon	$1.2 \mathrm{~K} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$
R144	RD14BY2H220J	Carbon	22Ω	$\pm 5 \%$	1/2W
R145	RD14BB2E122J	Carbon	22Ω	$\pm 5 \%$	$11 / 4 W$
R146	RD14BB2E103J	Carbon	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	$11 / 4 \mathrm{~W}$
R201	RN148K2H5900F	Metal	590Ω		
R202, 203	RN148K2H3160F	Metal	316Ω		
R204	RN148K2H4220F	Metal	422Ω		
R205, 206	RN148K2H4870F	Metal	487Ω		
R207	RN148K2H1210F	Metal	121Ω		
R208, 209	RN148K2H5620F	Metal	562Ω		
R210	RN148K2H38R3F	Metal	38.3Ω		
R211, 212	RN148K2H5900F	Metal	590Ω		
R213	RN148K2H12R1F	Metal	12.1Ω		
R214, 215	RN148K2H5900F	Metal	590Ω		
R216	RN148K2H3R83F	Metal	3.83Ω		
J101-103	R92-0150-05	Jumper	Wire		
Semiconductor					
Q101, 102	2SK381D	Field Effect Transistor			
Q103, 104	2SA838 (C)	Transistor			
Q105	2SC1222 (Y)	Transistor			
Q106	2SA604 (Y)	Transistor			
Q107	2SC945 (Y)	Transistor			
Q108	2SA505 (Y)	Transistor			
Q109	2SC2274 (D E)	Transistor			
Q110, 111	2SC1222 (Y)	Transistor			
Q112	2SC1096	Transistor			
Q113	2SA634	Transistor			
D101~104	1S1588	Diode			
D105, 106	MTZ24JC	Diode			
D107	W02	Diode Bridge			
TH101	STT-300H	Thermistor			
Miscellaneous					
VR101	R12-8001-05	Semi-fixed resistor 2.2M 2 B			
VR102	R12-0056-05	Semi-fixed resistor 100Ω B			

Ref No.	Parts No.	
S101 a~e	S42-5501-05	Push switch
S102 a, b	S42-2501-05	Push switch
S201 a, b	S01-2502-05	Rotary Switch
		Printed circuit board

Schematic Diagram

Circuits and specifications are subject to change for improvement.

K4XL's BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu

