50 MHz ALL MODE TRANSCEIVER

TS-60S SERVICE MANUAL

CONTENTS

CIRCUIT DESCRIPTION 2
SEMICONDUCTOR DATA 21
DESCRIPTION OF COMPONENTS 25
PARTS LIST 30
EXPLODED VIEW 61
PACKING 64
ADJUSTMENT 65
TERMINAL FUNCTION 83
CIRCUIT DIAGRAMS / PC BOARD V1EWS LCD ASSY (B38-0719-15) 86
FINAL UNIT (X45-3490-00) 89
DIGITAL UNIT (X46-318X-XX) 93
PLL UNIT (X50-3200-00) 97
DDS (X58-4020-00) 99
VCO (X58-4120-00) 100
IF UNIT (X48-3110-00) 104
ALC (X59-3990-00) 104
TX-RX UNIT (X57-4570-00) 105
DSST (X59-4000-00) 109
SCHEMATIC DIAGRAM 115
BLOCK DIAGRAM 117
MB-13 (MOUNTING BRACKET) 119
PG-2Y (DC CABLE) 119
MC-47 (MULTI FUNCTION MICROPHONE) 120
SPECIFICATIONS 121

CIRCUIT DESCRIPTION

Frequency Configuration

The TS-60S uses double conversion in all transmission modes, double conversion in all reception modes except FM, and triple conversion in FM reception mode. (Fig. 1)

Mode	Display frequency
USB, LSB	Carrier point frequency
CW	Transmit carrier frequency
AM, FM	If filter center frequency

Table 1 Display frequency in each mode

Fig. 1 Frequency configuration

The receiver frequency in SSB mode is given by the following equation when the receiver tone produced by the input frequency (fin) from the antenna is zero beat (when an SSB signal with a carrier point of fiN is zeroed in):
fin = fL.O1-fLO2 - fCAR

Since all these frequencies are generated by the PLL circuit, as shown in Figure 2 (PLL frequency configuration), the receiver frequency is determined only by the reference frequency, fstd, and the PLL divide ratio. This means, the accuracy of the reference frequency determines the accuracy of the operating frequency of the transceiver.

The accuracy of the reference crystal oscillator used in the TS-60S is $10 \mathrm{ppm}\left(-10\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$. The accuracy of the optional temperature-compensated crystal oscillator (TCXO, SO-2) is $0.5 \mathrm{ppm}\left(-10\right.$ to $+50^{\circ} \mathrm{C}$).

In SSB transmission mode or in other modes, the frequency is determined by the reference frequency (fsTo) and the PLL divide ratio. Table 1 lists the display frequencies in the various modes.

The pitch of the incoming signal in CW mode can be varied in $50-\mathrm{Hz}$ steps in the range 400 to 1000 Hz without changing the center frequency of the IF filter (variable CW pitch system).

FM transmission is carried out by applying the audio signal from the microphone to the $62.35-\mathrm{MHz} \mathrm{VCO}$ and modulating floz.

PLL Circuit Configuration

The TS-60S PLL circuit uses a reference frequency of 20 MHz , and covers 40 to $60 \mathrm{MHz}(\mathbf{K}), 50$ to 54 MHz (E) in 5 - to $200-\mathrm{Hz}$ steps, depending on how fast the encoder is turned. Figure 2 shows the frequency configuration of the PLL circuit. Figure 3 is a PLL block diagram.

1. Reference oscillator circuit

The reference frequency (fSTD) for frequency control is generated by the $20-\mathrm{MHz}$ crystal oscillator, X 1 and Q12 (2SC2714(Y)). The reference frequencies for other circuits are produced by dividing fSTD by two and by five by IC2 (μ PD74HC390G). fsTD is divided by two to produce a $10-\mathrm{MHz}$ PLL reference signal, which goes to IC11 (CXD1225M) and IC101 (CXD1225M). It is input to the CAR oscillator section to produce a 10.695MHz signal. The $4-\mathrm{MHz}$ signal produced by dividing fsTd by five goes to IC4 (SN16913P).

The crystal oscillator circuit can be replaced by an optional TCXO (SO-2). The TS-60S can be switched to the TCXO by removing a shorting jumper (W1/N2).

CIRCUIT DESCRIPTION

2. LO2 (PLL loop)

The VCO of $\mathrm{C} 10(\mathrm{KCH} 14)$ generates a signal of 62.35 MHz . The $10-\mathrm{MHz}$ reference frequency is applied to pin 5 of K 101 (CXD1225M), and is divided by 200 (800 in FM mode) to produce a $50-\mathrm{kHz}(12.5-\mathrm{kHz}$ in FM model comparison frequency. The output from the VCO is applied to pin 11 of IC101, and is divided by 1247 (4988 in FM mode). It is then compared with the $50-\mathrm{kHz}(12.5-\mathrm{kHz}$ in FM mode) reference signal by the phase comparator to lock the VCO frequency. Divide ratio data is supplied by the digital unit.

The output is amplified by amplifier Q18 (2SC2954) and passes through a low-pass filter. The VCO is modulated in FM mode.

3. L01 (PLL loop)

Q1, Q3 (2SK508NV) in the X58-4120-00 are VCOs. Q1 generates a signal of 113.045 to 123.044 MHz ; and Q3, a signal of 123.045 to 133.045 MHz . K type

Q3 (2SK508NV) in the X58-4120-00 are VCO. Q3 generates a signal of 123.045 to 127.045 MHz . E type

The $10-\mathrm{MHz}$ reference signal is input to pin 5 of IC11 (CXD1225M) and is divided by 20 to produce a $500-\mathrm{kHz}$ comparison frequency. The output signal
from the VCO is mixed with a $75.045-$ to $75.545-\mathrm{MHz}$ signal from the PLL (described later) to produce a $38.0-$ to 57.5 MHz signal. It is input to pin 11 of IC11, divided, and compared with the $500-\mathrm{kHz}$ signal by the phase comparator, and the VCO frequency is locked. Divide ratio data is supplied by the digital unit.

The $20-\mathrm{MHz}$ reference signal is input to DDS1 (X58-$4020-00$), and the output signal is mixed with a $4-\mathrm{MHz}$ signal by 1 C 4 to generate a signal of 4.455 to 4.955 MHz (in $5-$ or $200-\mathrm{Hz}$ steps). The signal is mixed with the $80-$ MHz signal ($4 \times 20-\mathrm{MHz}$ reference frequency) by IC5 (SN16913P) to produce a 75.045 to 75.545 MHz signal (in $5-$ or $200-\mathrm{Hz}$ steps).

4. CAR

The $20-\mathrm{MHz}$ reference signal is input to DDS2 (X58-4020-00), and the output signal is mixed by IC7 ISN 16913 P) with the 10 MHz signal divided by IC2 to produce a $10.695-\mathrm{MHz}$ signal. This signal passes through the band-pass filter and amplifier and is output for local oscillation and detection.

5. DDS

The DDS is the same as that used in the TS-50.

Fig. 2 PLL circuit frequency configuration

CIRCUIT DESCRIPTION

Receiver Circuit Configuration

The configuration of the receiver circuit is doubleconversion with a first IF of 73.045 MHz and a second IF of 10.695 MHz , and triple-conversion in FM mode with a first IF of 73.045 MHz , a second IF of 10.695 MHz , and a third IF of 455 kHz . (Fig. 5)

The incoming signal from the antenna passes through the antenna switch relay on the filter unit, then through the $60-\mathrm{MHz}$ low-pass filter, and goes to the TX-RX unit. The signal passes through a 20 dB attenuator and $54-\mathrm{MHz}$ low-pass filter in the TX-RX unit, and goes through the band-pass filters. If AIP is off, the signal passing through band-pass filter is amplified by the RF amplifier, Q9, Q10 and Q69 (2SK520 $\times 3$), and is input to the first mixer, Q 5 to $\mathrm{Q8}(2 \mathrm{SK} 520 \times 4$). If AlP is on, the signal bypasses Q9, Q10 and O69 and goes directly to the first mixer. It is mixed with the LO1 signal by the first mixer to produce a first IF signal of 73.045 MHz .

The first IF signal of 73.045 MHz passes through the MCF (XF1), is amplified by Q17 (3SK131), and mixed with the $62.35-\mathrm{MHz}$ LO2 signal by the second mixer. Q18 and Q19 ($2 \mathrm{SK} 520 \times 2$), to produce a second IF signal of 10.695 MHz .

The second IF signal of 10.695 MHz is split into two. One signal goes to the NB amplifier, and the other passes through the NB gate FET (3SK131). The signal then passes through the CF (XF2) and is detected by IC2 (KCD04) in FM mode. In other modes, the signal goes to the IF filter of the $\times 48-3110-00$ unit. There are three types of IF filter: $6-\mathrm{kHz}, 2.7-\mathrm{kHz}$, and $500-\mathrm{Hz}(500-$ Hz is optional). The signal passing through the IF filter goes to IC3 (KCD08), and is product-detected in SSB and CW modes, and envelope-detected in AM mode.

1. Receiver front-end

The signal input to the TX-RX unit passes through the switching circuit of the attenuator and the $60-\mathrm{MHz}$ low-pass filter, and goes to band-pass filters. If AIP is off, D49 and D11 turn on and D8 and D9 turn off, and the signal passing through filter is amplified by about 10 dB by Q9. O10 and Q69 (2SK520 $\times 3$) and output to the first mixer. If AIP is on, D49 and D11 turn off and D8 and D9 turn on, and the signal is output directly to the first mixer without passing through Q9, Q10 and Q69. The first mixer, is a quad balanced mixer, Q 5 to O8 (2SK520 $\times 4$). (Fig. 4)

Fig. 4 Receiver front-end

NOIIdIy9SヨG IInગપIO

CIRCUIT DESCRIPTION

2. Noise blanker circuits

The $10.695-\mathrm{MHz}$ IF signal generated from the first IF of 73.045 MHz by the second mixer is input to IF amplifier Q21 (3SK131), sent through Q20, amplified by noise amplifier Q200, Q201, and Q202 (2SC2714). sent through buffer Q203, and noise-detected by D200. This signal switches Q205, Q206, and Q209, and controls Q22 in the TX-RX unit. Q22 controls IF amplifier Q21 and blanks the noise.

Fig. 6 Noise blanker circuits

CIRCUIT DESCRIPTION

3. SSB, AM, CW filter circuit

The second IF signal amplified by 021 is input to the X48-3110-00 unit in all modes except FM.

If an optional CW filter (XF1) is installed and CW NARROW is elected in CW mode, the signal passes through XF1 according to the control signal from the microcomputer. If XF1 is not installed or CW NARROW is not selected, the signal passes through XF3 and XF2.

In SSB mode, the signal passes through XF3 and XF2.

In AM mode, the signal passes through XF3 and XF2 as in SSB mode if AM NARROW is selected. If AM NARROW is not selected, the signal passes through XF2 only.
in FM mode, the signal does not pass through the filter circuit in this unit.

Fig. 7 Filter circuit

Item	Rating
Nominal center frequency	$10,695 \mathrm{kHz}$
Center frequency deviation	Within $\pm 80 \mathrm{~Hz}$ at 6 dB
Pass bandwidth	500 Hz or more at 6 dB
Insertion loss	Within $5 \mathrm{~dB} \pm 2 \mathrm{~dB}$
Terminating impedance	$1200 \mathrm{~S} / 6 \mathrm{pF}$

Table 2 MCF (L71-0283-05) : IF unit XF1 (Option)

Item	Rating
Nominal center frequency	10.695 MHz
Pass bandwidth	6 kHz or more at 6 dB
Attenuation bandwidth	$\underline{40 \mathrm{kHz} \text { or less at } 60 \mathrm{~dB}}$
Ripple	2 dB or less
Insertion loss	3 dB or less
Guaranteed attenuation	60 dB or more within fo $\pm 1 \mathrm{MHz}$
Terminating impedance	$1.2 \mathrm{kS} \pm 10 \% / 6 \mathrm{pF} \pm 10 \%$

Table 3 MCF (L71-0433-05) : IF unit XF2

Item	Rating
Nominal center frequency	10.695 MHz
Center frequency deviation	Within $\pm 200 \mathrm{~Hz}$ at 6 dB
Pass bandwidth and	2.2 kHz or more at 6 dB
Attenuation bandwidth	$\pm 1.5 \mathrm{kHz}$ or less at 20 dB
	$\pm 2.4 \mathrm{kHz}$ or less at 60 dB
Rinple	2 dB or less
Insertion loss	5 dB or less
Guaranteed attenuation	60 dB or more within $60 \pm 40 \mathrm{kHz}$
Terminating impedance	$1.2 \mathrm{k} \Omega \pm 5 \% / 6 \mathrm{pF} \pm 5 \%$

Table 4 MCF (L71-0249-05) : IF unit XF3

4. SSB, AM, CW detection circuit

After unwanted signal components have been removed in the $\times 48-3110-00$ unit, the signal is input to IC3 (KCD08). The signal amplified by IC3 is mixed with the CAR signal input from CN11 in SSB and CW modes, and detected to output an audio signal. In AM mode, the signal is envelope-detected by the diode and capacitor to output an audio signal.

5. FM detection circuit

The impedance of the second IF signal amplified by Q21 is converted by Q23 (RU201) in FM mode, and unwanted signal components are removed by the CF (XF2). The resulting signal is input to the detection IC (IC2: KCD04). The signal is then mixed with the $10.24-$ MHz oscillator signal to generate the $455-\mathrm{kHz}$ signal. The signal is passed through ceramic filter CFi, and detected by the quadrature detector with the signal phase-shifted by CD1.

6. Squelch circuit

In all modes except FM , the $10.695-\mathrm{M}$ Hz IF signal is detected by a diode in IC3, passed through Q29 and Q30, and a voltage proportional to the signal level appears at the base of Q31. When the SQ VR is turned clockwise, the emitter voltage of Q31 increases and Q32 is switched on.

In FM mode, as the ! F signal increases, the noise level decreases, and the voltage at the SQ pin decreases, making the SC pin low. When the SQ VR is turned clockwise, the voltage at the SQ pin rises, and the SC pin goes high. Current flows through R77, and Q32 turns on.

Q35 turns on to mute the AF signal line. (Fig. 8)

CIRCUIT DESCRIPTION

Fig. 8 Squelch circuit

7. Signalstrength meter circuit

In all modes except FM, the signalstrength meter circuit comprises operational amplifier IC5. The signal, level-detected by IC3, is input to IC5 (1/2) and amplified by about 8 dB by IC5 (2/2).

In FM mode, the level detection signal from IC2 is adjusted by VR2, selected by IC4 (BU4066BF) according to the mode, and output directly to the digital unit. (Fig. 9)

8. AGC circuit

The time constant for the signal envelope-detected by IC3 is changed in each mode by the analog switch. The effective value, not the peak value, is used in AM mode. When SLOW is selected in SSB and CW modes, the analog switch is turned on. (Fig. 9)

CIRCUIT DESCRIPTION

Fig. 9 S-meter and AGC circuits

Transmitter Circuit Configuration

The audio signal from the microphone enters CN15 of the TX-RX unit. The signal then goes to Q38 (2SC3722K) of the microphone amplifier, and is split and directed to the SSB and FM systems. In the SSB system, the signal, its gain properly adjusted by VR7, is amplified by Q 40 ($2 \mathrm{SC} 2712(\mathrm{Y})$), balance-modulated with the CAR signal (10.695 MHz) input from CN11 by IC8 ($\mu \mathrm{PC} 1037 \mathrm{HA})$, passed through Q 42 (2SC2712(Y)). and sent to the crystal filter in the X48-3110-00 unit. The SSB signal passing through the filter is amplified by O43 (3SK131M).

The $62.35-\mathrm{MHz}$ LO2 signal from the PLL unit is input from CN3 of the TX-RX unit, and mixed with the $10.695-\mathrm{MHz}$ signal amplified by $\mathrm{O} 43, \mathrm{Q} 46$, and Q 47 (3 SK131 (M)) to produce a $73.045-\mathrm{MHz}$ signal. The LO1 signal from the PLL unit is input from CN2 of the TX-RX unit, and mixed with the $73.045-\mathrm{MHz}$ signal by 048 and O49 (3SK184(R)) to generate the desired signal. The signal passes through the band-pass filter and is
amplified by Q50 (2SC2954) to produce the drive output, which goes to the final unit from CN19.

The signal is amplified to the appropriate power level for the type by the final unit. Harmonic components are attenuated by the filter unit, and the signal is output from the antenna connector.

In FM mode, the audio signal amplified by microphone amplifier Q38 and Q39 is input to CN1 of the PLL unit, and passes through the pre-emphasis and IDC circuit of ${ }^{\prime}$ C201 to modulate $\mathrm{LO} 2(62.35 \mathrm{MHz})$.

In AM mode, the signal is generated by unbalancing the carrier of SSB balance modulator IC8.

In CW mode. Q59 of the TX-RX unit is switched by the key, and the signal is input to IC of the digital unit. The sidetone monitor signal is generated by $\times 59-4000$ 00 in the TX-RX unit, and output from the speaker. The CW control signal is output from IC1 of the digital unit, and input from CN17 of the TX-RX unit to switch Q46 and Q47 and generate the CW signal. (Fig. 10)

TS-60S

CIRCUIT DESCRIPTION

Fig. 10 Transmitter section block diagram

CIRCUIT DESCRIPTION

1. ALC circuit

The forward wave voltage detected in the filter unit passes through CN18 in the TX-RX unit, its level is adjusted by VR14, and it is applied to the differential amplifier comprising Q1 and $\mathrm{Q} 2(2 S C 2712(Y) \times 2)$ in IC11. When VSF is applied to the base of Q1, the emitter voltage of Q 1 and O 2 increases and the current flowing through the base of Q 2 decreases; thus the collector voltage rises. When this voltage exceeds the emitter voltage of $\mathrm{Q} 3(2 \mathrm{SC} 2712(\mathrm{Y})$) (about 1.8 V) plus VBE (about 0.6 V), the current flows through the base of Q 3 and the collector voltage drops. ALC time constants C and R are connected to this collector.

The collector voltage change is shifted by Q4 (2SK208) and D2 (3.6V), and matched with the voltage
for keying by O5 and D3 (RLS73) to generate the ALC voltage. This ALC voltage activates ALC by lowering the second gate voltage of Q43 (3SK131(M)) of the TXRX unit. (Fig. 11)

2. Power control circuit

Power is controlled by lowering the base voltage of Q 2 in IC11. As the base voltage of Q 2 decreases, the emitter voltage of Q1 and Q2 decreases. This activates ALC and reduces the power even if the base voltage (VSF) of Q1 is low. The power is changed by IC12. In AM mode, Q63 turns on, and the power is reduced to about $1 / 4$ of the power in other modes. (Fig. 11)

Fig. 11 ALC and power control circuits

CIRCUIT DESCRIPTION

3. Protection circuit

When the reflected wave voltage (VSR) detected by the filter unit rises, Q6 (2SC2714(Y)) in lC11 turns on to reduce the voltage of the ALC time constant line. The drive is decreased and the power is reduced to protect the final transistor.

4. Temperature protection

If the final heat sink temperature rises, 08 in the final unit turns on and the fan starts running at low speed in both transmit and receive modes. If the final heat sink temperature rises further, O 9 turns on, and the fan rotates at medium speed in both transmit and receive modes. If the temperature rises further still, the fan rotates at high speed in transmit mode, and at medium speed in receive mode to reduce the fan noise.

If the temperature continues to rise, the temperature detection port of the microcomputer (IC1 in the digital unit) is made high to reduce the RF output forcibly. If the fan fails or does not rotate because something is stopping it, the RF output is forcibly reduced in the same way.

Digital Control Circuit

The TS-60S digital control circuit comprises a 16 -bit microcomputer (M37702M4A-FP), a reset IC (M62003FP), an EEPROM (NM93C66LEM8 or AT93C66-10SI2.7), a latch (TC74HC573AF), and a decoder (TC74HC238AF). The latch and decoder are used to expand the output ports. The decoder outputs an enable signal pulse.

1. Power button

With this transceive, the power is turned on and off by the microcomputer. When the power button is pressed, the microcomputer detects it and energizes, the power relay to supply 14 V to the transceiver. When the power button is pressed to turn the transceiver off, the microcomputer checks it a little longer than when turning the power on, and deenergizes the power relay.

2. Reset circuit

IC4 (M62003FP) monitors Vcc applied to the microcomputer. If the voltage falls below 2.15 V , the IC outputs a reset signal (low) to the microcomputer, and the CPU initializes all internal data (including memory channel data). The reset signal is not output when the power is turned on or off or 14 V is turned on or off. It is output when the battery voltage level goes low and 14 V is turned on or off.

C35 generates the signal width (td) required to reset the microcomputer. (Fig. 12)

Fig. 12 Reset circuit

CIRCUIT DESCRIPTION

Fig. 13 Digital control block diagram

TS-60S

CIRCUIT DESCRIPTION

3. Backup circuit

This transceiver has two kinds of data stored in the microcomputer and EEPROM. User data, such as memory channel data, is stored in the microcomputer, and adjustment data, such as meter curves, is stored in the EEPROM. The EEPROM data is retained when the power supply voltage is off, but power is required to retain the microcomputer data. If 14 V is not cut off, power is supplied from the 5 V AVR in the digital unit. If 14 V is cut off, power is supplied from a lithium battery. To retain data with the lithium battery, the microcomputer must be in backup mode. So, the backup circuit shown in Figure 14 detects a voltage drop in the 14 V line and outputs a backup request signal to the microcomputer.

4. PLL and DDS control circuit

The TS-60S has three PLLs and two DDSs. The main microcomputer outputs frequency data to the PLLs and DDSs serially according to the display frequency.

5. TX-RX unit control signal circuit

The microcomputer sends the mode signal, IF filter select signal, and power signal to the TX-RX unit. It receives meter signals and standby switch signals from the TX-RX unit, displays data on the meters, and performs the transmit operation. The output signal from the microcomputer goes to the serial-to-parallel converter (TC9174F). (Fig. 15)

Fig. 14 Backup circuit

Fig. 15 TX-RX unit control signal circuit

CIRCUIT DESCRIPTION

6. Switch A/D input

The voltage divided by nine switches $\mathrm{S} 16, \mathrm{~S} 2$ to S 9 , S10 to S15, and S17 to S19 is applied to the AD input pin of the microcomputer when a button is pressed. (Fig. 16) When two or more buttons in the same group are pressed at the same time, only the button with the highest priority is detected (listed below).

KAD1		KAD2		Priority
S16	SPLIT	S11	F. LOCK	1
S3	AIP/AT	S12	DOWN	2
S4	NB	S13	UP	3
S5	RIT	S 14	MHz	4
S6	$\mathrm{M} . \mathrm{IN}$	S 15	$\mathrm{~A} / \mathrm{B}$	5
S7	SCAN	S 10	MN	6
S8	$\mathrm{M}>\mathrm{V}$	S 17	$\mathrm{~A}=\mathrm{B}$	7
S9	CLR	S 18	SSB/CW	8
S2	MENU	S 19	FM/AM	9

Table 5

7. EEPROM

Adjustment data is stored in the EEPROM, which consists of 256 16-bit registers. Data can be written to and read from the EEPROM. Each time the power is switched on, data is read from the EEPROM. If corrupt data is detected, the default adjustment data is used. Adjustment data can be written into the EEPROM in service adjustment mode. (Fig. 17)

Fig. 17 EEPROM circuit

Fig. 16 Switch A/D input circuit

CIRCUIT DESCRIPTION

8. Encoder circuit

The encoder is a mechanical one. The waveforms of the encoder pulses are rectified by IC3 and IC4 (TC4S584F) in the LCD assembly, and the number of pulses is counted by the hardware counter in the microcomputer. The rotational speed of the encoder is detected. When the encoder is turned slowly, the frequency step is made fine; when it is turned quickly, the
frequency step is made coarse to ensure smooth tuning and frequency change. The minimum frequency step is $5 \mathrm{~Hz}(50 \mathrm{~Hz}$ in FM mode); the maximum, 200 Hz (2 kHz in FM mode). The frequency step is changed continuously according to the speed of rotation. (Fig. 18)

Fig. 18 Encoder circuit

9. Busy signal

The level of the port is monitored in receive mode, and busy indication and busy stop are performed during scanning.

10. Dimmer control

The dimmer is controlled in five steps (including OFF). The lamp is turned on or off by pin 7 of IC2 of the switch unit. The brightness of the dimmer lamp is determined by pins 5 and 6 of IC2. (Fig. 19)

11. Beep

The beep signal is generated using the timer in the microcomputer. The menu enable data (beep on/off, mode beep, warning Morse) is recognized, and the necessary code is output. A dot lasts about 40 ms ; a dash, about 120 ms . The oscillation frequency is about 1.4 kHz .

Fig. 19 Dimmer control circuit

CIRCUIT DESCRIPTION

12. Subtone

The subtone frequency is converted from digital to analog by a ladder resistor, and a pseudo-sine wave, including the $1750-\mathrm{Hz}$ tone, is output. (Fig. 20)

Fig. 20 Subtone circuit

CIRCUIT DESCRIPTION

13. Settings

- Contents of menu

If you hold down the F. LOCK key for more than 1.5 seconds, a menu is displayed. You can change the menu number with the encoder, change between menus A and B with the $A B$ key, and change settings with the UP/DOWN key.

Menu No.	Contents of menu A	State (display)	Initial state
00	Power change	Depending on marketplace	Depending on marketplace
01	Dimmer quantity changeover	OFF/d1/d2/d3/d4	d2
02	AGC SLOW/FAST changeover (SSB, CW, AM)	S/F	Depending on data
03	IF filter switching (SSB, CW, AM)	$0.5 / 2.4 / 6 \mathrm{kHz}$	Depending on data
04	SSB/CW switch change	SSB/ULC	SSB
05	CW delay time switching	See instruction manual.	600
06	CW	$400 \sim 1000$	800
07	CW reverse onanga (50-Hz stef)	ON/OFF	OFF
08	Encoder lock on/off	ON/OFF	OFF
09	Program scan busy stop on/off	ON/OFF	ON
10	Program scan time-operate/carrier-operate changeover	O/1	0
11	Memory scan busy stop on/off	ON/OFF	ON
12	Memory scan time-operate/carrier-operate changeover	O/1	0
13	All memory scan on/off	ON/OFF	OFF
14	Four times power meter indication at lower power	ON/OFF	OFF
15	Repeater subtone on/off	ON/OFF	ON
16	MIC U/D step frequency change in SSB/CW mode	See instruction manual.	10 kHz
17	MIC U/D step frequency change in FM/AM mode	See instruction manual.	10 kHz

Menu No.	Contents of menu B	State (display)	Initial state
50	Beep tone on/of:	ON/OFF	ON
51	Mode Marse onioff	ON/OFF	ON
52	Warning Morse on/off	ON/OFF	ON
53	Repeater subtone frequency setting	67.0~1750.0	Contents in memory
54	Repeater subtone mode setting	b/c	c
55	Meter peak hold on/off	ON/OFF	ON
56	Memory channel automatic increment on/off	ON/OFF	OFF
57	Standard memory channel frequency temporary change	ON/OFF	OFF
58	Program scan hold function on/off	ON/OFF	OFF
59	Memory protect 1 (write/erase inhibit) on/off	ON/OFF	OFF
60	Memory protect 2 (overwrits/erase inhibit) on/off	ON/OFF	OFF
61	(Not used)		
62	$1-\mathrm{MHz} / 500-\mathrm{kHz}$ changeover when l-MIHz Step is on	1000/500kHz	1000
63	RIT frequency variable range $1.1-\mathrm{ki}+\mathrm{z} / 2.2-\mathrm{kriz}$ changeover	1.1/2.2kHz	1.1 kHz
64	Automatic power-oft on/off	ON/OFF	OFF
65	Transmit inhibit function	ON/OFF	OFF
66	Microphone sensitivity change	H/L	L
67	PF1 key setting	00~99	83 (menu A)
68	PF2 key setting	00~99	00 (power change)
69	PF3 key setting	00~99	36 (TF-SET)
70	PF4 key setting	00~99	82 (monitor)
71	LSB transmit/receive carrier point setting	-100~200	0
72	USB transmit/receive carrier point setting	-100~200	0

CIRCUIT DESCRIPTION

- PF key functions

Three kinds of function (panel function, menu A/B function, and non-panel function) are assigned to the four PF keys on the microphone. To assign a function to a key, specify the number in the following table using the UP/DOWN key in the order of 67 to 70 (PF1 to PF4) in menu B mode. The PF keys are named PF1, PF2, PF3, and PF4 from the left, as viewed from the front of the microphone.

No.	Menu A function	No.	Panel key function	No.	Menu \mathbf{B} function	No.	Special function
00	Menu 00	20	MENU	50	Menu 50	80	AF MUTE
01	Menu 01	21	AIP	51	Menu 51	81	AF ATT
02	Menu 02	22	ATI	52	Menu 52	82	MONITOR
03	Menu 03	23	NB	53	Menu 53	83	Menu A
04	Menu 04	24	F. LOCK	54	Menu 54	84	Menu B
05	Menu 05	25	UP	55	Menu 55	85	1 Hz display
06	Menu 06	26	DOWN	56	Menu 56	99	OFF
07	Menu 07	27	MHz	57	Menu 57		
08	Menu 08	28	RIT	58	Menu 58		
09	Menu 09	29	SCAN	59	Menu 59		
10	Menu 10	30	CLR	60	Menu 60		
11	Menu 11	31	M. IN	61	OFF		
12	Menu 12	32	$M>V$	62	Menu 62		
13	Menu 13	33	M N	63	Menu 63		
14	Menu 14	34	A/B	64	Menu 64		
15	Menu 15	35	SPLIT	65	Menu 65		
16	Menu 16	36	TF-SET	66	Menu 66		
17	Menu 17	37	A=B				
		38	SSB/CW				
		39	FM/AM				

14. VCO switching data

Frequency	VCO data	
	VB2	VB1
$40 \mathrm{MHz} \leq \mathrm{f}<50 \mathrm{MHz}$	L	H
$50 \mathrm{MHz} \leq \mathrm{f}<60 \mathrm{MHz}$	H	L

SEMICONDUCTOR DATA

CPU : M37702M4A265FP (Digital Unit IC1) Block diagram

SEMICONDUCTOR DATA

- Terminal function

Pin	Pin name	Signal name	1/0	Function	Remarks
1	ANO/	MDN	1	Microphone down switch	
2	P67/	CSS	I	PTT switch	SW ON : "H"
3	P66/	LDA	0	LCD data	Destination D input strobe
4	TBOIN/	EDP1	1	Encoder pulse	
5	INT2/	LCK	0	LCD clock	
6	INT1/	BKC	I	Backup Vcc detection	Normally "H"
7	INTO/	PSW	1	Power switch	SW ON : "H"
8	TA4IN	EDP1	1	Encoder pulse	
9	TA4OUT	EDP2	I	Encoder pulse	
10	P57/	DRL	0	Power relay control	Power ON : "H"
11	P56/	THP	1	Final temperature detection	High temperature : "H"
12	P55/	NFT	0	Not FM TX	FM TX: 'L"'
13	P54/	PEN2	0	PLL enable	Ω pulse
14	P53/	PDA	0	PLL/EEPROM/DDS data	
15	P52/	PCK	0	PLL/EEPROM/DDS clock	
16	P51/	NB	0	NB on/off	NB ON: "H"
17	P50/	BEEP	0	Beeper pulse	
18~22	P47~P43	DA7~DA3	0	D/A	
23	P42/	DA2	0	Digital-to-analog converter	10
24	P41/	DA1	0	Digital-to-analog converter	/RDY
25	P40/	DAO	0	Digital-to-analog converter	/HOLD
26	BYTE		1	(External bus width specification)	* $=$ don't care
27	CNVss		1	CPU operation mode specification	
28	RESET	RES	1	CPU reset	Normally "H"
29	XIN		1	System clock	
30	XOUT		0	System clock	
31	E		0		
32	Vss				
33	P33/	DEN2	0	DDS2 enable	Ω pulse
34	P32/	ECS	0	EEPROM thip select	Select: HI
35	P31/	EDI	1/0	EEPROM data outputBusy input	Busy : 'L"
36	P30/	UCK	0	Shift register clock	
37	P27/	UDA	0	Shift register data	
38	P26/	KYS	I	Key jack input	Key insert : "H"
39	P25	KYB	1	Key input	Key down : "H"
40	P24/	TXS	0	TX/RX control	TX: "H"
41	P23/	RXS	0	RX enable	RX: "H"
42	P22/	CKS	0	CKY control signal	TX: "H"
43	P21/	AGC	0	AGC slow/fast changeover	Fast : "L"
44	P20/	HEN	0	Latch enable	Ω pulse
45~52	P17/~P10	D7~D0	1/0	Pseudo-bus	
53	P07/	BSY	1	Signal busy	Busy : "H"
54	P06/	MGS	0	Microphone sensitivity selection	High-sensitivity : ' ${ }^{\prime \prime}$
55	P05/	ULK	1	Unlock signal	Unlock : "L"
56	P04/	PEN1	0	PLL enable	Ω pulse
57	P03/	DEN1	0	DDS1 enable	Ω pulse
58~60	P02/~P00/	DCD1~DCD3	0	Decoder output	
61	P87/	TXD	0	ASCI (debug)	
62	P86/	RXD	1	ASCI (debug)	
63	P85/	RTS	0	ASCI (debug)	
64	P84/	CTS	I	ASCI (degub)	
65~68			-	Not used	

TS-60S

SEMICONDUCTOR DATA

Pin	Pin name	Signal name	I/O	Function	Remarks
69	Vcc		I	Power supply	
70	AVcc		I	Analog-to-digital converter power supply	
71	VREF		I	Analog-to-digital converter reference power supply	
72	AVss		I	Analog-to-digital converter ground	
73	Vss		I	Ground	
74	AN7/	SM	I	Signal strength meter	
75	AN6/	PWM	I	Power meter	
76	AN5/	RVR	I	RIT VR	
77,78	AN4/, AN3/	KAD1, KAD2	I	Panel key input	
79	AN2/	ISV	I	IF SHIFT VR	
80	AN1/	MUP	I	Microphone up switch	

EEPROM : NM93C66LEM8 or AT93C66-10SI2.7 (Digital Unit IC5)

- Terminal connection diagram

- Block diagram

- Terminal names

CS	Chip Select
SK	Serial Data Clock
DI	Serial Data input
DO	Serial Data Output
GND	Ground
VCC	Power Supply

SEMICONDUCTOR DATA

Final Transistor : SRFJ7001MP * (Final Unit 05, 6)

- External View

* : Pair
- Maximum rating

Item	Symbol	Rating	Unit
Collector-Base voltage	VCBO	36	V
Collector-Emitter voltage	VCEO	18	V
Emitter-Base voltage	VEBO	4	V
Collector current	IC	20	A
Collector dissipation $\left(\mathrm{TC}=25^{\circ} \mathrm{C}\right)$	PD	250	W
\quad Derate above $25^{\circ} \mathrm{C}$		1.43	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

Drive Transistor : 2SC1972-26 (Final Unit 02, 3)

- External View

- Maximum rating $\quad\left(\mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)$

Symbol	Condition	Rating	Unit
VCBO		35	V
VEBO		4	V
VCEO	RBE $=\infty$	17	V
IC		3.5	A
PC	$\mathrm{TC}=25^{\circ} \mathrm{C}$	25	W
Tj		175	${ }^{\circ} \mathrm{C}$
Tstg		$-55 \sim+175$	${ }^{\circ} \mathrm{C}$

DESCRIPTION OF COMPONENTS

FINAL UNIT (X45-3490-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
IC1	Comparator	Fan control.
IC101	Regulator	$14 \mathrm{~V} \rightarrow 5 \mathrm{~V}$
IC102	Regulator	$14 \mathrm{~V} \rightarrow 8 \mathrm{~V}$
Q1	Pre-drive amplifier	VHF band wide band-amplification.
Q2,3	Drive amplifier	VHF band push-pull wide-band amplification.
Q4	Final bias supply	Final temperature compensation.
Q5,6	Final amplifier	VHF band push-pull wide-band amplification.
Q7	Relay drive	Energizes or deenergizes the linear amplifier control relay.
Q8~10	Fan motor drive	Runs the fan during transmission or when the temperature rises.
Q11	Switching transistor	On when the fan runs.
Q101	Relay drive	The relay is energized when the power is turned on.
Q102	Switching transistor	On when overvoltage occurs.
D1	Temperature compensation	Pre-drive temperature detection.
D2	Temperature compensation	Drive tempera ure derection.
D3	Relay surge absorption	Linear amplifietritay.
D4,5	Temperature compensation	Final temperature aetec: on.
D6	Relay surge absorption	The relay is energ zea anen the power switch is ttined on.
D7	Protection diode	Reverse power connection protection.
D8	Switching	OR circuit.
D102	Protection diode	Relay counter-voltage bypass.
D103	Zener diode	Overvoltage detection.

DIGITAL UNTT (X46-318X-XX) 0-11: K 2-71:E

Ref. No. Use/Function		
IC1	CPU	Microcomputer.
IC2	3 to 8 line decoder	Serial-to-parallel conversion.
IC3	Latch	Data retention.
IC4	Reset	
IC5	EEPROM	4 k bits (Adjustment data memory).
IC6	Regulator	$14 \mathrm{~V} \rightarrow 5.6 \mathrm{~V}$
Q2	Driver	
Q4	Driver	
Q5, 6	Signal switch	Off : Backup
D1~7	Switching	Destination selection.
D9	Switching (reverse-flow prevention)	OR cifcuit.
D11	Power supply	Voltage shift.
D12	Zener diode	Backup detection (voltage shift).
D13	Switching	Backup detection.
D14	Reverse-flow prevention	

IF UNIT (X48-3110-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
$\mathrm{Q} 1,2$	Switching	On when 0.5 kHz filter is selected.
Q 3	Switching	On when 2.4 kHz filter is selected.
$\mathrm{D} 1,2$	Switching	10.695 MHz filter selection.
D 3	Switching	On in FM receive mode.
D4~7	Switching	10.695 MHz filter selection.

DESCRIPTION OF COMPONENTS

PLL UNIT (X50-3200-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
IC2	Divider	1/2, 2/5
IC3	Mixer	$5: 113.045 \sim 133.045 \mathrm{MHz}(\mathrm{K}), 123.045 \sim 127.045 \mathrm{MHz}(\mathrm{E})$ input $11: 75.045 \sim 75.545 \mathrm{MHz}$ input $13: 38 \sim 57.5 \mathrm{MHz}$ output
IC4	Mixer	1:4.455 4.955MHz output $2: 4 \mathrm{MHz}$ input
IC5	Mixer	$1: 75.045 \sim 75.545 \mathrm{MHz}$ output $2: 80 \mathrm{MHz}$ input $\quad 5: 4.455 \sim 4.955 \mathrm{MHz}$ input
IC7	Mixer	$1: 10.695 \mathrm{MHz}$ output $2: 10 \mathrm{MHz}$ input
IC8	Inverter	Reference oscillation (20 MHz) phase reversal.
IC10	VCO	$62 \mathrm{MHz} \mathrm{VCO} \mathrm{(HIC)}$
IC11	PLL	2,3,4 : Divide ratio setting input $\quad 5: 10 \mathrm{MHz}$ input $\quad 7$: Lock voltage output 8: Unlock output (High during UL) $\quad 11: 38 \sim 57.5 \mathrm{MHz}$ input
IC201	MIC amplifier	FM MIC amplifier (HIC)
Q1	Signal switch	ULK signal.
Q2	Amplifier	LO1 (113.045~ 133.045MHz (K), 123.045~127.045M Hz (E)) output.
Q3	Buffer	LO1 (113.045~133.045MHz (K), 123.045~127.045M Hz (E)) mixer (IC3) input.
Q5	Amplifier	20 MHz , divider (!C2) input.
Q9	Amplifier	10 Mm z m xer (IC7) input.
Q10	Amplifier	CAR 10695 MHz) cutput.
Q11	Quadruple circuit	$20 \mathrm{MHz} \times 4$
Q12	Crystal oscillator	20 MHz
Q13, 14	Buffer	20 MHz
Q16	Buffer	$4.455 \sim 4.955 \mathrm{MHz}$ mixer (IC5) input.
Q17	Signal switch	FM MIC mute
Q18	Amplifier	LO2 (62.35 MHz) output.
Q19	Buffer	$38 \sim 57.5 \mathrm{MHz}$
Q20	Amplifier	$38 \sim 57.5 \mathrm{MHz} \mathrm{PLL}$ (IC11) input.
Q21~23	LPF	Active low-pass filter.
Q200~202	Amplifier	NB amplifier.
Q203	Buffer	NB amplifier.
Q204	Amplifer	NB AGC.
Q205, 206	Signal switch	NB smplifier.
Q207	Signal switch	NB ON/OFF.
Q209	Signal switch	NB amplifier.
Q210	Buffer	Tone signal.
Q211	Switch	On in FM mode.
D1	Switching	ULK OR circuit.
D2	LED	On: Unlock
D3	Clipper	
D200	Detection	Noise detection.

TX-RX UNIT (X57-4570-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
IC2	HIC	FM frequency conversion, detection, signal strength meter output.
IC3	HIC	SSB, AM, CW detection, signal strength meter output.
IC4	Switching	Analog switch.
IC5	DC amplifier	For signal strength meter (except FM).
IC6	Switching	Analog switch.
IC7	Amplifier	Audio amplifier.
IC8	Balanced modulation	SSB, AM modulation.
IC10	Three-terminal regulator	Constant voltage, output 5V.
IC11	HIC	ALC, final protection.
IC12, 13	Extended I/O	Serial-to-parallel conversion.

DESCRIPTION OF COMPONENTS

Ref. No.	Use/Function	Operation/Condition/Compatibility
IC14	Amplifier	Power meter.
Q1	Switching	Attenuator relay drive.
Q2	Switching	On in transmit mode, off in receive mode.
Q3,4	Switching	On in receive mode, off in transmit mode.
Q5~8	Mixer	IF : 73.045 MHz RF: $40 \sim 60 \mathrm{MHz}(\mathrm{K}), 50 \sim 54 \mathrm{MHz}(\mathrm{E})$ LO1: 113.045~133.045MHz (K), 123.045~127.045MHz (E)
Q9, 10	RF amplifier	
Q11	Amplifier	LO1 amplification.
Q12	Switching	On when AIP is on.
Q13	Power supply	Ripple filter.
Q14	Switching	On when AIP is on.
Q15, 16	Switching	On when AIP is off.
Q17	IF1 amplifier	73.045 MHz amplification.
Q18, 19	Mixer	IF1: 73.045 MHz LO2: 62.35 MHz IF2: 10.695 MHz
Q20	Amplifier	Buffer amplifier for NB noise amplifier.
Q21	Amplifier	IF2 amplification.
Q22	Switching	For NB.
Q23	Amplifier	Buffer amplifier for FM XF.
Q24	Amplifier	Amplification in all modes except FM.
Q25	Switching	Squelch time constant switching.
Q26	Switching	On in FM mode.
Q27, 28	Switching	On in receive mode.
Q29, 30	Amplifier	DC amplifier for squelch.
Q31. 32	Switching	For squelch.
Q33	Switching	On in FM mode.
Q34	Amplifier	For audio.
Q35	Switching	Audio mute.
Q36	Switching	Off : High microphone sensitivity.
Q37	Switching	On in CW mode (microphone mute).
Q38	Amplifier	Microphone amplifier.
Q39	Amplifier	Microphone amplifier (For FM).
Q40	Amplifier	Microphone amplifier (For SSE and AM).
Q41	Amplifier	Buffer for input to balanced modulator.
Q42	Amplifier	Amplifier for balanced modulator output.
Q43	Amplifier	10.695 MHz amplification.
Q44	Switching	On at medium power.
Q45	Switching	On at low power.
Q46, 47	Mixer	LO2:62.35MHz $\quad \mathbb{N}: 10.695 \mathrm{MHz} \quad 0 . \mathrm{T} \quad .9 .045 \mathrm{MHz}$
Q48, 49	Mixer	LO1 : $113.045 \sim 133.045 \mathrm{MHz}(\mathrm{K}), 123.045 \sim 127.045 \mathrm{MHz}(\mathrm{E})$ IN : 73.045 MHz OUT : $40 \sim 60 \mathrm{MHz}(\mathrm{K}), 50 \sim 54 \mathrm{MHz}(\mathrm{E})$
Q50	Amplifier	Transmit drive amplifier.
051~53	Switching	DC/DC converter.
Q55	Switching	Medium/Narrow: On.
Q56	Switching	AF mute/wide : On.
057	Switching	SSB/CW: On.
Q58	Switching	FM/AM : On.
059	Switching	On for CW key down.
Q60	Switching	Off during mentoring,
Q61	Switching	Off during audio muting
Q62~66	Switching	On in AM mode.
Q67	Switching	On : Squelch open.
Q69	RF amplifier	
Q70	Buffer	RF amplifier.
0501	Signal switch	Transmit/receive changeover relay drive.

TS-60S

DESCRIPTION OF COMPONENTS

Ref. No.	Use/Function	Operation/Condition/Compatibility
D1	Relay surge absorption	For attenuator relay.
D2~5	Lightning surge absorption	
D8, 9	Switching	The diode is on when AlP is on.
D11	Switching	The diode is on when AIP is off.
D12	Switching	Switch for sending LO1 to the transmit or receive mixer.
D13	Switching	AGC time constant.
D14	Switching	Switch for sending LO1 to the transm ' or receive mixer.
D16, 17	Switching	On in transmit mode, off in rece . c moge.
D18	Clipper	On when input is large.
D19	Reverse-flow prevention	
D20	Zener diode	For constant voltage.
D21, 22	Switching	On in transmit mode.
D23	Switching	On in receive mode.
D24	Reverse-flow prevention	
D25	Zener diode	For constant voltage.
D26	Reverse-flow prevention	
D27, 28	Switching	On in FM and CW modes.
D29	Reverse-flow prevention	
D30	Voltage shift	
D31	LED	Stabilizing power supply using V p.
D34	Rectification	DC/DC converter.
D35, 36	Zener diode	For consiani volrage.
D37~40	Reverse-flow prevention	
D41	Switching	On in receive mode, off in transmit mode.
D42, 43	Reverse-flow prevention	
D44	Switching	On in receive mode, off in transmit mode.
D46	Reverse-flow prevention	
D49	Switching	The diode is on when AIP is off.
D50, 51	Zener diode	For constant voltage.
D501	Spike surge absorption	Surge absorber.
D502	Relay surge absorption	Transmit/receive changeover relay.
D503, 504	RF detection	SWR, PO detection

DDS (X58-4020-00)

Ref. No.	Use/Function	
IC1	DDS Operation/Condition/Compatibility	
Q1	Buffer	

VCO (X58-4120-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
$Q 1$	VCO1-A	$113.045 \sim 123.044 \mathrm{MHz}$.
$Q 2$	Switching	VCO1-A change.
$\frac{Q 3}{O 4}$	VCO1-B	$123.045 \sim 133.045 \mathrm{MHz}$.
$Q 5$	Switching	Amplifier
$Q 6$	Buffer	
$D 1$	Varicap	VCO1 output, $113.045 \sim 123.044 \mathrm{MHz}(\mathrm{K}) .123 .045 \sim 133.045 \mathrm{MHz}(\mathrm{E})$.
$D 2$	Switching	VCO1-A.
$D 3$	Varicap	VCO1-A output.
$D 4$	Switching	VCO1-B.

DESCRIPTION OF COMPONENTS

ALC (X59-3990-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
Q1	Switching	CKY control.
Q2	Waveform rectification	ALC keying.
$D 1,2$	Reverse-flow prevention	

DSST (X59-4000-00)

Ref. No.	Use/Function	Operation/Condition/Compatibility
$\frac{\text { Q1 }}{}$	Switching	TXB.
Q2	Switching	RXB.
$\frac{\text { Q3.4 }}{}$	Switching	On in transmit mode.
$\frac{\text { Q5 }}{}$	Switching	On in receive mode.
Q11	Oscilator	Sidetone.
$D 12$	Temperature compensation	
$D 13$	Switching	

PARTS LIST

CAPACITORS $\frac{\mathrm{CC}}{1} \quad \frac{45}{2} \quad \frac{\mathrm{TH}}{3} \quad \frac{1 H}{4} \quad \frac{220}{5} \quad \frac{\mathrm{~J}}{6}$

$1=$ Type \ldots ceramic, electrolytic. etc. $4=$ Voltage rating
$2=$ Shape... round, square, ect.
$3=$ Temp. coefficient

$$
5=\text { Value }
$$

$6=$ Tolerance

- Capacitor value

$010=1 \mathrm{pF}$	2	2	$\underline{0}=22 \mathrm{pF}$
$100=10 \mathrm{pF}$			
$101=100 \mathrm{pF}$			
$102=1000 \mathrm{pF}=0.001 \mu \mathrm{~F}$			

- Temperature coefficient

- Tolerance

Code	C	D	G	J	K	M	X	Z	P	No code
$(\%)$	± 0.25	± 0.5	± 2	± 5	± 10	± 20	+40	+80	+100	More than $10 \mu \mathrm{~F}-10 \sim+50$
						-20	-20	-0	Less than $4.7 \mu \mathrm{~F}-10 \sim+75$	

Less than 10 pF

Code	B	C	D	F	G
(pF)	± 0.1	± 0.25	± 0.5	± 1	± 2

- Voltage rating

1st word	2nd word	A	C	D	E	F	G	H	J	K	V
0	1.0	1.25	1.6	2.0	2.5	3.15	4.0	5.0	6.3	8.0	-
1	10	12.5	16	20	25	31.5	40	50	63	80	35
2	100	125	160	200	250	315	400	500	630	800	-
3	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	-

- Chip capacitors (Refer to the table above except dimension)

(EX)	$\frac{C C}{1}$	$\frac{73}{2}$	$\frac{E}{3}$	$\frac{S L}{4}$	$\frac{\text { TH }}{5}$	$\frac{000}{6}$	$\frac{J}{7}$
	(Chip) (CH, RH, UJ, SL)						
(EX)	$\frac{C K}{1}$	$\frac{73}{2}$	$\frac{E}{3}$	$\frac{E}{4}$	$\frac{1 H}{5}$	$\frac{000}{6}$	$\frac{Z}{7}$
	(Chip) (B, F)						

RESISTORS

- Chip resistor (Carbon)

(EX)	RD	73	E	B	-	$\underline{2 B}$		000	J	
	1	2	3	4		5		6	7	
	(Chip	(B								

- Carbon resistor (Normal type)
(EX) $\frac{\mathrm{RD}}{1} \quad \frac{14}{2} \quad \frac{\mathrm{~B}}{3} \quad \frac{\mathrm{~B}}{4} \quad \frac{2 \mathrm{C}}{5} \quad \frac{000}{6} \quad \frac{\mathrm{~J}}{7}$

$1=$ Type \ldots ceramic, electrolytic, etc.		$5=$ Voltage rating
$2=$ Shape \ldots round, square, ect.		$6=$ Value
3	$=$ Dimension	
4	$=$ Temp. coefficient	

Dimension

Dimension (Chip capacitor)

Dimension code	L	W	T
Empty	5.6 ± 0.5	5.0 ± 0.5	Less than 2.0
E	3.2 ± 0.2	1.6 ± 0.2	Less than 1.25
F	2.0 ± 0.3	1.25 ± 0.2	Less than 1.25

- Dimension (Chip resistor)

Dimension code	L	W	T	Wattage
E	3.2 ± 0.2	1.6 ± 0.2	0.57	2 B
F	2.0 ± 0.3	1.25 ± 0.2	0.45	2 A

Rating wattage

Code	Wattage	Code	Wattage	Code	Wattage
2 A	$1 / 10 \mathrm{~W}$	2 E	$1 / 4 \mathrm{~W}$	3 A	1 W
2 B	$1 / 8 \mathrm{~W}$	2 H	$1 / 2 \mathrm{~W}$	3 D	2 W
2 C	$1 / 6 \mathrm{~W}$				

* Now Parts

Parts without Parts No. are not supplled.
Les artizles non mentionnes dens le Parts No. ne sont pas foumils
Te le omme Parts No. Werden nloht geliffert.
TS-60S

* New Parts

Parts without Parts No. are not supplled.
Les articles non mentionnes dans le Parts No. ne sont pas fournis
Teile ohne Parts No. werden niont geliefert.
TS-60S
FINAL UNIT ($\times 45-3490-00$)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas foumnls
Teile ohne Parts No. werden nicht geliefert.
FINAL UNIT ($\mathbf{X 4 5}$-3490-00)

＊New Parts

PARTS LIST

Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
FINAL UNIT（X45－3490－00）

Ref．No．参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号	Description 部 品 名／規 格	Desti－ nation仕向	Re－ marks備考
CN105			E40－3246－05	PIN CONNECTOR		
J1			E63－0401－05	PHQNQ JACK		
J2			E13－0166－05	PHONQ JACK		
J101			E11－0451－05	PHQNE JACK		
J102			E11－0450－05	PHQNE JACK		
TP1－3			E23－0512－05	TERMINAL		
W1			E37－0360－05	CONNECTING WIRE		
W2			E37－0361－05	CONNECTING WIRE		
W3			E37－0362－05	CQNNECTING WIRE（DC CABLE）		
W4			E37－0363－05	CONNECTING WIRE（EALC）		
W5			E37－0364－05	CONNECTING WIRE（PHQNE，KEY）		
W6			E37－0358－05	FLAT CABLE（TQ FILTER）		
W7			E37－0359－05	CONNECTING WIRE（DRIVE）		
W8			E31－3301－05	INSIDE CQNNECTING WIRE（PQ）		
110	3 E		F01－0994－02	HEAT SINK		
111	3 E		F10－2052－04	SHIELDING PLATE		
112	2 E		F20－1120－04	INSULATING BQARD		
113	1 E		F29－0014－05	INSULATQR		
F101			F53－0093－05	FUSE		
M1	3 E		F09－0438－05	FAN MQTQR		
115	2 F		G02－0574－04	FLAT SPRING（IC101，102）		
117	3 E		J99－0330－04	SHIELDING BQARD		
L1			L 40－1092－48	SMALL FIXED INDUCTQR（ 1 UH ）		
L2			L．40－1292－48	SMALL FIXED INDUCTOR（3．3UH）		
L3		＊	L39－1250－05	CQIL		
L4		＊	L39－1251－05	CQIL		
L5			L33－0699－05	CHQKE CQIL		
L6			L33－0617－05	CHOKE COIL		
L7			L33－0699－05	CHOKE CQIL		
L8			L33－0617－05	CHOKE CQIL		
L11			L33－0651－05	CHOKE CQIL		
L12			L33－0617－05	CHOKE CQIL		
L13		＊	L39－1248－15	CQIL		
L15			L40－3392－48	SMALL FIXED INDUCTQR（3．3UH）		
L17， 18			L40－4791－14	SMALL FIXED INDUCTOR		
L101			L15－0016－05	LQW－FREQENCY CHOKE CQIL		
L102			L40－1001－48	SMALL FIXED INDUCTOR		
M	1E，2E		N09－2187－05	SCREW（TRANSISTQR）		
N	3 E		N35－3020－46	BINDING HEAD MACHINE SCREW		
P	2E，2F		N87－3006－46	BRAZIER HEAD TAPTITE SCREW		
R2			RK73FB2A270J	CHIP R 27 J 1／10W		
R4			R92－0670－05	CHIP R 0 OHM		
R5			RK73FB2A681J	CHIP R 680 J 1／10W		
R6			RK73FB2A331J	CHIP R 330 J 1／10W		
R7			RK73FB2A471J	CHIP R 470 J 1／10W		
R8 ， 9			RK73FB2A4R7J	CHIP R 4.7 J $1 / 10 \mathrm{~W}$		
R10			R92－1242－05	FIXED RESISTQR 6.8 1／2W		
R11			R92－1243－05	FIXED RESISTQR 8.2		
R12， 13			R92－1209－05	CHIP R 15 J $1 / 4 \mathrm{~W}$		
R14， 15			R92－1292－05	FIXED RESISTQR 68 1W		
R16 R21		＊	$\begin{aligned} & \text { R92-1378-05 } \\ & \text { RS14DB3A150J } \end{aligned}$	FIXED RESISTQR 56 $1 / 4 \mathrm{~W}$ FL－PRQQF RS 15 J 1 W		

L：Scandinavia
Y：PX（Far East，Hawaii）

Y：AAFES（Europe）

K：USA
T：England
X：Australia

P：Canada
E：Europe
M：Other Areas

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
FINAL UNIT (X45-3490-00)

L:Scandinavia	K:USA	P:Canada
Y:PX(Far East, Hawaii)	T:England	E:Europe
Y:AAFES(Europe)	X:Australia.	M:Other Areas

＊New Parts
Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
DIGITAL UNIT（X46－318X－XX）

Ref．No． 参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号			Description品 名／規	格		$\begin{aligned} & \text { Desti- } \\ & \text { nation } \\ & \text { 仕 向 } \end{aligned}$	Re－ marks備考
C6－8			CK73FB1H102K	CHIP	C	1000PF	K			
C9			CK73FB1E103K	CHIP	C	0.01 UF	，			
C10－24			CK73FB1H102K	CHIP	C	1000PF	K			
C25， 26			CC73FCH1H101J	CHIP	C	100PF	J			
C27－29			CK73FB1E103K	CHIP	C	0.01 UF	K			
C30			CC73FCH1H101J	CHIP	C	100PF	J			
C31			CK73FB1H102K	CHIP	C	1000PF	K			
C32，33			CC73FCH1H330J	CHIP	C	33 PF	J			
C34			CK73FF1C105Z	CHIP	C	1．OUF	Z			
C35			CK73FF1E104Z	CHIP	C	0.1 UF	Z			
C36			CK73FB1H102K	CHIP	c	1000PF	k			
C37－45			CC73FCH1 H101 J	CHIP		100 PF	T			
C46			C92－0009－05	CHIP	tan	4.7 UF	10			
C47－54			CK73FB1H102K	CHIP	C	1000PF	K			
C55			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C56， 57			CK73FB1H102K	CHIP	C	1000PF	K			
C58			C92－0009－05	CHIP	TAN	4．7UF	10			
C59			CK73FF1C105Z	CHIP	C	1．OUF	Z			
C60			CK73FB1E103K	CHIP	C	0.01 UF	K			
C61， 62			CC73FCH1H101J	CHIP	C	100PF	J			
C63			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C64			CK73FB1H102K	CHIP	C	1000PF	，			
C65			C92－0009－05	CHIP	TAN	4．7UF	10			
C66－73			CK73FB1H102K	CHIP	C	1000PF	K			
C74			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C75			C92－0009－05	CHIP	TAN	4．7UF				
C76－77			CK73FB1H102K	CHIP	C	1000PF				
C78， 79			CK73FB1H102K	CHIP		1000PF	K			
C80－84			CK73FB1E103K	CHIP	C	0.01 UF	K			
CN1			E40－5314－05		CONNEC	TQR FQR IN	IDE	（25P）		
CN2			E40－5610－05		CQNNEC	TQR FOR IN	IDE	（11P）		
CN3			E40－5314－05	PIN	CONNEC	TQR FOR IN	IDE	（25P）		
CN4			E40－5301－05		CONNEC	TQR FQR IN	IDE	（12P）		
CN5			E40－5610－05	PIN	CONNEC	TOR FQR IN	IDE	（11P）		
CN6			E40－5183－05	PIN	CONNEC	TQR FQR IN	IDE	（6P）		
L1			L40－1801－18	SMAL	L FIXE	D INDUCTOR	18 U			
X1			L77－1522－05	CRYS	Stal Re	SQNATOR（7．	M HZ			
CP1			R90－0711－05	MUL	TI－COMP					
R1			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R2			RK73FB2A472J	CHIP	R	4.7 K	J	1／10W		
R3－5			RK73FB2A471J	CHIP	R	470		1／10W		
R6			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R7－11			RK73FB2A471J	CHIP	R	470	J	1／10W		
R12－19			RK73FB2A103J	CHIP	R	10K	J	1／10W		
R20－25			RK73FB2A221J	CHIP	R	220	J	1／10W		
R26			RK73FB2A105J	CHIP	R	1．OM	J	1／10W		
R27－31			RK73FB2A221J	CHIP	R	220	J	1／10W		
R32			RK73FB2A471J	CHIP	R	470	J	1／10W		
R33， 34			RK73FB2A221J	CHIP	R	220	J	1／10W		
R35			RK73FB2A471J	CHIP	R	470	J	1／10W		
R36			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R37－39			RK73FB2A471J	CHIP	R	470	J	1／10W		
R40， 41			RK73FB2A101J	CHIP	R	100	J	1／10W		

L：Scandinavia
Y：PX（Far East，Hawaii）
Y：AAFES（Europe）

K：USA
P：Canada
Y：PX（Far East，Hawaii）
T：England
E：Europe

* New Parts

PARTS LIST
Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
DIGITAL UNIT (X46-318X-XX)
IF UNIT (X48-3110-00)

Parts without Parts No. are not supplled.
Les articles non mentionnes danș le Parts No. ne sont pas fournis.
Telle ohne Parts No. werden nicht geliefert.

IF UNIT (X48-3110-00) PLL UNIT (X50-3200-00)

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

* New Parts

PLL UNIT (X50-3200-00)

L:Scandinavia
Y:PX(Far East, Hawaii)

Y:AAFES(Europe)
K:USA
P:Canada
Y:PX(Far East, Hawaii)
T:Englan
X:Australia
E:Europe
M:Other Areas 4 indicates safety critical components.

PLL UNIT (X50-3200-00)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
PLL UNIT (X50-3200-00) TX-RX UNIT (X57-4570-00)

L:Scandinavia	K:USA	P:Canada	
Y:PX(Far East, Hawaii)	T:England	E:Europe	
Y:AAFES(Europe)	X:Australia	M:Other Areas	indicates safety critical components.

TS-60S

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No، werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

PARTS LIST
Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les anticles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

PARTS LIST

* New Parts

TX-RX UNIT (X57-4570-00)

PARTS LIST

＊New Parts
Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
TX－RX UNIT（X57－4570－00）

Ref．No．参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号	Description 部 品 名／規 格	Desti－ nation仕向	Re－ marks備考
D37			1 SS355	DIQRD（or		
D38， 39			DAN202K	DIQRD		
D40			1 SS355	DIQRD（or MA110）		
D41			RLS135	DIQRD		
D42			HSM88AS	DIQRD		
043			1 SS355	DIQRD（or MA110）		
D44			RLS1 35	DIQRD		
D46			1 SS355	DIQRD（or MA110）		
D49			RLS135	DIQRD		
D50			RD3．9M（B2）	DIQRD		
D51		＊	RD12M（B2）	DIQRD		
D501			DSA301LA	DIQRD		
D502			LFB01	DIQRD		
D503，504			1 SS101	DIQRD		
IC2			KCD04	HIC（FM IF）		
IC3			KCD08	HIC		
IC4			XRU4066BCF	IC or		
IC4			BU4066BCF	IC		
IC5			NJM2904M	IC（QP AMP X2）		
IC6			XRU4066BCF	IC（or BU4066BCF）		
IC7			UPC 1241 H	IC		
IC8			UPC1037HA	IC（DUBBLE BALANCE MQDULATQR）		
IC10			UPC78N05H	IC（VQLTAGE REGULATQR $/+8 \mathrm{~V}$ ）		
IC11			KCC08	HIC		
IC12， 13			TC9174F	IC（CMQS I／O EXTENSIQN）		
IC14			TA75S01F	IC		
01			DTA124EK	DIGITAL TRANSISTQR		
Q2			2SD1757K	TRANSISTQR		
Q3			2SA1213（Y）	TRANSISTQR		
Q4			DTC143TK	DIGITAL TRANSISTQR		
Q5－10			2SK520（K4．4）	FET		
Q11			2SC2954	TRANSISTQR		
Q12			DTA124EK	DIGITAL TRANSISTQR		
Q13			2SC4728（S）	TRANSISTQR		
Q14， 15			DTC143TK	DIGITAL TRANSISTQR		
016			2SA1213（Y）	TRANSISTQR		
017			3SK131（M）	FET		
Q18， 19			2SK520（K43）	FET		
020			RU201	TRANSISTQR		
021			3SK131（M）	FET		
022			2SC2712（Y）	TRANSISTQR		
Q23			RU201	TRANSISTQR		
024			2SC2712（Y）	TRANSISTQR		
025			2SJ106（GR）	FET		
Q26			FMC1	TRANSISTER		
Q27， 28			DTC124EK 2SC2712（GR）			
029			2SC2712（GR）	TRANSISTOR		
030			2SK210（GR）	FET		
031			2SA1162（Y）	TRANSISTQR		
032			FMC2	TRANSISTQR		
033			DTC124EK	DIGITAL TRANSISTQR		
034			2SC2712（Y）	TRANSISTQR		
035			2SD1757K	TRANSISTQR		
Q36， 37			DTC143EK	DIGITAL TRANSISTQR		
038，39			2SC3722K（R）	TRANSISTQR		

Y：PX（Far East，Hawaii） Y：AAFES（Europe）

K：USA
T：England
X：Australia

P：Canada
E：Europe
M：Other Areas
\} indicates safety critical components．

* New Parts

TX-RX UNIT (X57-4570-00)
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert. DDS (X58-4020-00)

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis. \quad DDS (X58-4020-00)
Teile ohne Parts No. werden nicht geliefert.
VCO (X58-4120-00)

PARTS LIST

* New Parts

VCO (X58-4120-00)
Parts without Parts No. are not supplied
ALC (X59-3990-00)
ees articles non mentionnes dans le Parts No. ne sont pas fournis.
DSST (X59-4000-00)

TS-60S

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
LCD ASSY (B38-0719-15)

TS-60S

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
LCD ASSY (B38-0719-15)

L:Scandinavia	K:USA	P:Canada
Y:PX(Far East, Hawaii)	T:England	E:Europe
Y:AAFES(Europe)	X:Australia	M:Other Areas

EXPLODED VIEW

EXPLODED VIEW

TS-60S

EXPLODED VIEW

PACKING

ADJUSTMENT

Required Test Equipment

1. DC Voltmeter (DC V.M)
1) Input resistance: More than $1 \mathrm{M} \Omega$
2) Voltage range : 1.5 to $1000 \mathrm{~V} \mathrm{AC/DC}$

Note : A high-precision multimeter maybe used. However, accurate readings can not be obtained for high-impedance circuits.
2. AC Ammeter

1) Current range: $1.5 \mathrm{~A}, 3 \mathrm{~A}, 20 \mathrm{~A}$, High-precision ammeter may be used.
3. RF VTVM (RF V.M)
1) Input impedance : $1 \mathrm{M} \Omega$ and less than $3 p F$, min.
2) Voltage range : 10 mV to 300 V
3) Frequency range: 10 kHz to 100 MHz or greate.
4. AF Voltmeter (AF V.M)
1) Frequency range : 50 Hz to 10 kHz
2) Input resistance: $1 \mathrm{M} \Omega$ or greater
3) Voltage range : 10 mV to 30 V
5. AF Generator (AG)
1) Frequency range : 200 Hz to 5 kHz
2) Output: 1 mV or less to 1 V , low distortion
6. AF Dummy Load
1) Impedance : 8Ω
2) Dissipation: 3W or greater
7. Oscilloscope (SCOPE)

Vertical amplifier which has frequency characteristics higher than 100 MHz .
Requires high sensitivity, and external synchronization capabiliity.
8. Tracking Generator

1) Center frequency: 50 kHz to 90 MHz
2) Frequency deviation: Maximum $\pm 35 \mathrm{MHz}$
3) Output voltage : 0.1 V or greater
4) Sweep rate : At least $0.5 \mathrm{sec} / \mathrm{cm}$
9. Standard Signal Generator (SSG)
1) Frequency range: 50 kHz to 500 MHz
2) Output : $-133 \mathrm{dBm} / 0.05 \mu \mathrm{~V}$ to $7 \mathrm{dBm} / 0.5 \mu \mathrm{~V}$
3) Output impedance : 50Ω
4) $A M$ and $F M$ modulation can be possible

Note : Generator must be frequency stable.
10. Frequency Counter (f. counter)

1) Minimum input voltage : 50 mV
2) Frequency range : 500 MHz or greater
3) Output impedance : 50Ω
11. Noise Generator

Must generate ignition noise containing harmonics beyond 60 MHz .
12. RF Dummy Load

1) Impedance: 150Ω
2) Dissipation: 150W or greater
13. Power Meter
1) Impedance: 50Ω
2) Dissipation: 150W continuous or greater
3) Frequency limits: 60 MHz or greater
14. Spectrum Analyzer
1) Frequency range : 100 kHz to 500 MHz or greater
2) Bandwidth: 1 kHz to 3 MHz

15. Detector

1) For adjustment of PLLNCO BPF

16. Directional Coupler
17. Power Supply

PS-33, PS-53
18. Microphone

MC-47
19. Adjustment jig

EXtension cable (Use in common with TS-50S)

TS-60S

ADJUSTMENT

Use Method

ADJUSTMENT

ADJUSTMENT

Service Adjustment Mode

- Functions

*

1) Only the adjustment items on the service adjustment mode menu are set in service adjustment mode.
2) Adjusted data items A1 to AC in service adjustment mode are stored in the EEPROM.
3) When you enter service adjustment mode, data is read from the EEPROM into the RAM of the microcomputer. You can then modify the settings.
4) The EEPROM is updated only when a write operation is performed with the UP/DOWN key when in menu AD.
5) Two sets of the same data are written into the EEPROM to check whether the data has been written correctly. Data may not be written correctly if the power is turned off during writing.
6) When the power is turned on, the two sets of data are compared. If they are not the same, "Error" is displayed, not HELLO, and the default values for the unmatched data are used.
7) Adjusted menu numbers are backed up.
8) The following items are changed as shown to perform adjustment correctly in service adjustment mode. (When service adjustment mode ends, the original state returns.)

IF SHIFT \rightarrow Center (0 OHz)
RIT \rightarrow OFF
AIP, ATT \rightarrow OFF
$\mathrm{NB} \rightarrow \mathrm{OFF}$
AGC \rightarrow FAST
Transmit/receive carrier point correction \rightarrow Center (0 Hz)
Power $\rightarrow \mathrm{Hi}$
Filter FM mode (RX) \rightarrow OFF
Other mode $\rightarrow 2.4 \mathrm{k}$
9) A short tone is output when an item is changed with the UP/DOWN key. It is not output when repeating.

- Setting

1) Hold down the NB and MHz keys and switch the power on. (Turn the encoder to change the menu number.)
2) When the UP or DOWN key is pressed, the menu number is set.
3) Menu numbers A1 to A9 and AA to AC can be used in adjustment mode.
4) Press the CLR key to cancel adjustment mode. (It is also canceled when the power is turned off.)

Panel Operation

- Service adjustment mode
- Power on/off
- Service adjustment mode cancel

- PTT : TX/RX change
- MIC U/D SW : Service menu item U/D (with repeat)

ADJUSTMENT

Service Adjustment Mode Menu

Menu No.	Menu contents	State (display)	Initial value
A0	Checksum display	-	-
A1	RIT VR machine center correction	$00 \sim$ FF	80
A2	IF-SHIFT VR machine center correction	$00 \sim$ FF	80
A3	LSB carrier point adjustment	$-400 \sim+400$	0
A4	USB carrier point adjustment	$-400 \sim+400$	0
A5	S-meter curve adjustment (non- FM) S1	$00 \sim F F$	$2 E$
A6	S-meter curve adjustment (non- FM) S9	$00 \sim$ FF	73
A7	S-meter curve adjustment (non- FM) Full scale	$00 \sim$ FF	C2
A8	S-meter curve adjustment (FM) Start	$00 \sim$ FF	91
A9	S-meter curve adjustment (FM) Full scale	$00 \sim F F$	CC
AA	RF meter curve adjustment (low)	$00 \sim F F$	$3 C$
AB	RF meter curve adjustment (middle)	$00 \sim F F$	80
AC	RF meter curve adjustment (high)	$00 \sim F F$	B1
AD	Write into EEPROM	ready	ready
		run	
AE	All LCD segments on	good	

A0 : Checksum Display

- Adjustment function

Displays the version of the installed program.
Displays the two low-order bytes of the checksum
obtained by adding all program codes.

- Display

All other indicators are off.

ADJUSTMENT

A1 : RIT VR Mechanical Center Correction

- Adjustment function

Input the RIT control center position to the microcomputer so that the RIT frequency is zero when the RIT control is at its center position.

- Adjustment procedure

1. Set the RIT control to its center position.
2. Press the UP or DOWN key.

- Remarks

The center can be input unconditionally without pressing the UP/DOWN key. However, the UP/DOWN key must be pressed to prevent this menu item data from being modified accidentally when the RIT control is not at the center position.

When the UP/DOWN key is pressed, data is updated and the two displays match.

- Display

The input A/D value is displayed. (0-FFH)

The current A/D value for the RIT control center stored in the microcomputer is displayed. (0-FFH)

A2 : IF-SHIFT VR Mechanicale Center Correction

- Adjustment function

Input the IF-SHIFT control center position to the microcomputer so that the IF-SHIFT frequency is zero when the IF-SHIFT control is at its center position.

- Adjustment procedure

1. Set the IF-SHIFT control to its center position.
2. Press the UP or DOWN key.

- Remarks

The center can be input unconditionally without pressing the UP/DOWN key. However, the UP/DOWN key must be pressed to prevent this menu item data from being modified accidentally when the IF-SHIFT control is not at the center position.

When the UP/DOWN key is pressed, data is updated and the two displays match.

- Display

The input A/D value is displayed. (0-FFH)

The current A/D value for the IF-SHIFT control center stored in the microcomputer is displayed. ($0-\mathrm{FFH}$)

TS-60S

ADJUSTMENT

A3 : LSB Carrier Point Adjustment

- Adjustment function

Adjust the carrier point in $10-\mathrm{Hz}$ steps to correct variations in the center frequency of the IF filter in LSB mode.

- Adjustment procedure

1. Press the PTT button to enter transmit mode.
2. Change the correction frequency with the UP/ DOWN key or MIC UP/DOWN key.

- Remarks

The plus sign (+) indicates the direction of moving away from the carrier. (Same as IF-SHIFT)

The frequency and mode are forcibly changed to 51.9 MHz and LSB.

- Display

A4 : USB Carrier Point Adjustment

- Adjustment function

Adjust the carrier point in $10-\mathrm{Hz}$ steps to correct variations in the center frequency of the IF filter in USB mode.

- Remarks

The plus sign (+) indicates the direction of moving away from the carrier. (Same as IF-SHIFT)

The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Adjustment procedure

1. Press the PTT button to enter transmit mode.
2. Change the correction frequency with the UP/ DOWN key or MIC UP/DOWN key.

- Display

ADJUSTMENT

A5 : S-meter Curve Adjustment (S1) (non- FM) - Adjustment function

Input the S-meter voltage at which two bars of the S-meter light to the microcomputer to correct variations in the S1 level of the S-meter.

- Adjustment procedure

1. Input the specified leve! with the signal generator.
2. Press the UP or DOWN key.

- Display

- Remarks

The threshold is the input level minus the fixed value (6). When the input signal exceeds the threshold, one bar of the S-meter lights. The curve between S1 and S9 is obtained from the level for menus A5 and A6 by line approximation. Only the A/D values for the S1, S9, and full-scale levels are stored in the EEPROM. The meter bars operate according to the currently set curve: The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

A6 : S-meter Curve Adjustment (S9) (non- FM)

- Adjustment function

Input the S -meter voltage that indicates S 9 (the first large segment) to correct variations in the $\$ 9$ level of the S -meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The curve between S1 and S9 is obtained from the level for menus A5 and A6 by line approximation. The curve between S9 and full scale is obtained from the level for menus A6 and A7 by line approximation. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Display

ADJUSTMENT

A7 : S-meter Curve Adjustment (Full scale) (non- FM)

- Adjustment function

Input the S-meter voltage at which all the segments of the S- meter light to correct variations in the fullscale level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The curve between S9 and full scale is obtained from the level for menus A6 and A7 by line approximation. The meter bars operate according to the currently set curve. The curve is calculated when the UP/ DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Display

A8 : S-meter Curve Adjustment (S1) (FM)

- Adjustment function

Input the S-meter voltage at which two bars of the S -meter light to the microcomputer to correct variations in the S1 level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The threshold is the input level minus the fixed value (12). When the input signal exceeds the threshold, one bar of the S-meter lights. The curve between S1 and full scale is obtained from the level for menus A8 and A9 by line approximation. Only the A/D values for the S1 and full-scale levels are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and FM .

- Display

ADJUSTMENT

A9 : S-meter Curve Adjustment (Full scale) (FM)

- Adjustment function

Input the S-meter voltage at which all the segments of the S- meter light to correct variations in the fullscale level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

Only the A/D values for S1 and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and FM .

- Display

AA : RF Meter Curve Adjustment (Low)

- Adjustment function

Input the RF meter voltage at which six segments of the RF meter light to the microcomputer to correct variations in the low level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG from MIC connector.
2. Transmit.
3. Press the UP or DOWN key.

- Remarks

The threshold for the RF meter registering a signal is the input level minus the fixed value $(21 \mathrm{H})$. The curve is obtained from the level for menu AA and the start level by line approximation. The curve between 2 and 6 is obtained from the level for menus $A A$ and $A B$ by line approximation. Only the A/D values for 2,6 , and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are changed to 51.9 MHz and USB.

- Display

ADJUSTMENT

AB : RF Meter Curve Adjustment (Middle)

- Adjustment function

Input the RF meter voltage for segment 6 (the first large segment) to the microcomputer to correct variations in the middle level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG.
2. Transmit.
3. Press the UP or DOWN key.

- Remarks

The curve between 2 and 6 is obtained from the level for menus $A A$ and $A B$ by line approximation. The curve between 6 and full scale is obtained from the level for menus $A B$ and $A C$ by line approximation. Only the A/D values for 2,6 , and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are changed to 51.9 MHz and USB.

- Display

AC : RF Meter Curve Adjustment (High)

- Adjustment function

Input the RF meter voltage at which all the segments of the RF meter light to the microcomputer to correct variations in the full-scale level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG.
2. Transmit.
3. Press the UP or DOWN key.

- Display

TS-60S

ADJUSTMENT

AD : Write into EEPROM

- Adjustment function

Write data into the EEPROM.

- Adjustment procedure

1. Press the UP/DOWN key when "ready" is displayed.
2. While data is being written, "run" is displayed.
3. If the data is written correctly, "good" is displayed.
4. If a write error occurs, "error" is displayed.

Press the UP/DOWN key again.
If "error" is displayed repeatedly, check the EEPROM or other hardware for defects.

- Remarks

Writing is performed unconditionally (even if nothing has been changed). Two sets of the same data are written into the EEPROM. "good" is displayed only when both sets of data have been written normally. The UP/DOWN key is effective only when "ready" or "error" is displayed, and does not have the repeat function.

- Display

AE : All LCD Segments On

- Adjustment function

Check LCD cells and rubber connector connection.

- Display

TS-60S

ADJUSTMENT

Front Panel

Rear Panel

TS-60S

ADJUSTMENT

PLL and CAR Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		$\begin{array}{\|c\|} \hline \text { Test- } \\ \text { equipment } \\ \hline \end{array}$	Unit	Terminal	Unit	Parts	Method	
1. Setting	1) $D C I N: 13.8 \mathrm{~V}$ RIT VR : Center IF SHIFT VR : Center							
$\begin{aligned} & \text { 2. Reference } \\ & \text { OSC } \\ & \hline \end{aligned}$	1) MODE : FM	f. counter	PLL	TP1	PLL	TC1	20.000 .00 MHz .	$\pm 2 \mathrm{~Hz}$
$\begin{gathered} \text { 3. } \begin{array}{c} \mathrm{L} 28,29 \\ (80 \mathrm{MHz}) \\ \hline \end{array}{ }^{2} \mathrm{M} \\ \hline \end{gathered}$	1) MODE : FM	RF V.M		IC5-2 pin		$\begin{array}{\|l\|} \hline \text { L28 } \\ \text { L29 } \\ \hline \end{array}$	Peak	
$\begin{aligned} & \text { 4. } \mathrm{L} 21,22,23 \\ & (75.045 \sim \\ & 75.545 \mathrm{MHz}) \\ & \hline \end{aligned}$	1) Frequency: 51.900 MHz MODE : FM	RF V.M		TP3		$\begin{array}{\|l\|} \hline \text { L21~ } \\ \text { L23 } \end{array}$	Peak Align the core by screwing it in.	
5. Lock voltage	1) Frequency: 40.100 MHz MODE : LSB	DC V.M		TP2	VCO	TC1	2.8 V	$\pm 0.1 \mathrm{~V}$
	2) Frequency: 49.999 MHz MODE : FM						Check	5.0~8.0V
	3) Frequency: 50.000 MHz MODE: CW				VCO	TC2	2.8 V	$\pm 0.1 \mathrm{~V}$
	4) Frequency: 59.999 MHz Frequency: 53.999 MHz MODE : FM						Check	$5.0 \sim 8.0 \mathrm{~V}$ K 3.5 V or more
$\begin{aligned} & \text { 6. } 10.695 \mathrm{MHz} \\ & \text { level } \end{aligned}$	1) Frequency: 52.100 MHz MODE : CW	RF V.M 50Ω dummy load		TP4	PLL	L27	-4dBm	$\pm 1.0 \mathrm{dBm}$

Receiver Section Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		$\begin{gathered} \text { Test- } \\ \text { equipment } \end{gathered}$	Unit	Terminal	Unit	Parts	Method	
1. RFG	1) Frequency: 52.100 MHz MODE : FM	DC V.M	TX-RX	TP4	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	VR4	2.9 V	$\pm 0.03 \mathrm{~V}$
2. MCF	1) Frequency: 52.100 MHz MODE : FM Tracking generator output : -30dBm Spectrum analyzer setting Center frequency: 73.045 MHz Frequency span : 70 kHz ATT : 10dB V. REF : 2dB/DIV	Spectrum analyzer Tracking generator		TP2 TP1		$\begin{aligned} & \hline \text { L15~ } \\ & \text { L17 } \end{aligned}$	Repeat 2~3 times. Adjust it to make gain maximum, and make the band flat as shown in the right.	
3. IF AMP	1) Frequency : 52.099 MHz MODE : USB SSG ATT : $0.25 \sim 0.5 \mu \mathrm{~V}$ $(-119 \sim-113 \mathrm{dBm})$	SSGDM. SPOscilloscopeAF V.M	Rear panel	ANTEXT. SP	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	L66 L24~ L26, L28 IF in IC3 (2 pcs)	Repeat $2 \sim 3$ times. AF output MAX.	
4. MIX BAL	```1) Frequency: }52.099MH MODE : USB SSG RF: OFF AIP: OFF```					VR1	AF output MIN.	
$\begin{aligned} & \text { 5. SSB S-meter } \\ & \text { (S1) } \end{aligned}$	1) Frequency: 52.099 MHz MODE : USB SSG RF: OFF	$\begin{aligned} & \text { SSG } \\ & \text { DC V.M } \end{aligned}$	Rear panel TX-RX (A/4)	ANT TP5	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$		Record voltage.	
	2) SSG ATT : $0.7 \mu \mathrm{~V}(-110 \mathrm{dBm})$					VR in IC3	Record voltage +0.1 V .	
	3) Service adjustment mode menu No. (S MENU No.) : A5 SSG ATT: $1 \mu \mathrm{~V}(-107 \mathrm{dBm})$						UP or DOWN key : 1 push	S1 check
(S9)	4) S MENU No. : A6 SSG ATT : $20 \mu \mathrm{~V}(-81 \mathrm{dBm})$							S9 check

ADJUSTMENT

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
12. Noise	1) Frequency : 52.099 MHz MODE : USB AF VR : MIN	SSG DM. SP. Oscilloscope AF V.M	Rear panel	ANT EXT. SP			Check	$2 \mathrm{mV} / 8 \Omega$ or less
13. Reset	1) POWER SW: OFF While pushing the $A=B$ key POWER SW: ON						Reset display f. : 51.000 .0 kHz VFO : A MODE : FM	

Transmitter Section Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
1. ALC voltage	1) Frequency: 53.900 MHz MODE: CW Remove the cable from CN19 to the TX-RX unit. Transmit	DC V.M 50Ω dymmy load	TX-RX (A/4) Rear panel	TP6 (ALC) ANT	$\begin{aligned} & \text { TX-RX } \\ & \text { (A/4) } \end{aligned}$	IC11-VR2	2.7 V	$\pm 0.05 \mathrm{~V}$
2. TX AMP	```1) Frequency:}53.900\textrm{MHz MODE:CW Transmit```	Synchro scope or Spectrum analyzer 50Ω dummy load	$\begin{array}{\|l} \hline \text { TX-RX } \\ (\mathrm{A} / 4) \end{array}$ Rear panel	CN19 ANT	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	$\begin{aligned} & \text { L38~ } \\ & \text { L40 } \\ & \text { L44~ } \\ & \text { L46 } \\ & \text { L48 } \end{aligned}$	Repeat 2~3 times for MAX.	
3. MIX BIAS	$\begin{aligned} & \text { 1) Frequency: } 53.900 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \\ & \hline \end{aligned}$					VR12	Level MAX.	
(CW level) (AM level)	2) Transmit					VR11	Level MAX.	
	3) MODE : AM Transmit After adjusted, CN19 connect.					VR10	Level MAX.	
4. Final idling current	1) Frequency: 51.900 MHz MODE : USB Final unit VR1, VR2 : MIN Transmit	Power meter DC V.M	Rear panel	ANT	Final		Record current at VR1 and VR2 are MIN.	This current is total current.
						VR1	Total current + 250 mA .	
						VR2	(Total current + $250 \mathrm{~mA})+250 \mathrm{~mA}$.	
5. NULL	```1) Frequency:}52.000\textrm{MHz MODE : CW Transmit```	DC V.M	$\begin{aligned} & \hline T X-R X \\ & (C / 4) \end{aligned}$	CN502-2	$\begin{aligned} & \text { TX-RX } \\ & \text { (C/4) } \end{aligned}$	TC501	Voltage MIN.	Reference value : 50 mV or less
$\begin{array}{\|c} \text { 6. Power } \\ \text { (HI) } \\ \text { (MID) } \end{array}$	$\begin{aligned} & \text { 1) Frequency: } 52.000 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \\ & \hline \end{aligned}$	Power meter	Rear panel	ANT	TX-RX	VR14	95W	
	$\begin{aligned} & \text { 2) Frequency : } 52.000 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \end{aligned}$					VR16	45W	
(LOW)	```3) Frequency: }52.000\textrm{MHz MODE : CW Transmit```					VR15	10W	
7. Power frequency response	1) Frequency: 53.900 MHz MODE : CW Transmit				$\begin{aligned} & \hline \text { TX-RX } \\ & (C / 4) \end{aligned}$	VR501	MAX.	90W or more.
8. RF meter (FULL)	1) Frequency: 51.900 MHz MODE : USB S MENU No. : AC TX output : 80W Transmit	Power meter AG	Rear panel Front panel	$\begin{aligned} & \text { ANT } \\ & \text { MIC } \end{aligned}$			UP or DOWN key : 1 push	Full scale check.

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
(2)	2) S MENU No. : AA TX output: 18W Transmit	Power meter$A G$	Rear panel Front panel	ANT MIC			Up or DOWN key : 1 push	RF-meter "2" check.
(6)	3) S MENU No. : AB TX output: 40W Transmit							RF-meter "6" check.
9. CAR point	1) S MUNE No. : A3 or A4 (A3 : LSB, A4 : USB) AG1: $300 \mathrm{~Hz} / 1.2 \mathrm{mV}$ AG2 : $2700 \mathrm{~Hz} / 2 \mathrm{mV}$ AG output : Level at which not activated. Transmit	Power meter Oscilloscope AG AF V.M	Rear panel Front panel	ANT MIC			Adjust so that waveform cross by UP and DOWN key.	
10. Suppression	1) Frequency: 52.000 MHz MODE : USB Transmit	Power meter Coupler Oscilloscope	Rear panel	ANT	$\begin{aligned} & \hline \begin{array}{l} \text { TX-RX } \\ \text { (A/4) } \end{array} \end{aligned}$	VR8 VR9	MIN. Set it to the minimum value by adjusting in the USB and modes alternately near the center of the VR.	-40 dB or more.
11. MIC sensitivity	```1) Frequency: }52.000\textrm{MHz MODE : USB AG: 1kHz/3mV Transmit```	Power meter AG AF V.M	Rear panel Front panel	$\begin{aligned} & \text { ANT } \\ & \text { MIC } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { TX-RX } \\ (A / 4) \end{array} \end{aligned}$	VR7	60W	$\pm 1.0 \mathrm{~W}$
12. Spurious	1) Frequency: 50.000 MHz MODE : CW Transmit	Power meter Coupler Spectrum analyzer	Rear panel	ANT	$\begin{aligned} & \begin{array}{l} \text { TX-RX } \\ (A / 4) \end{array} \end{aligned}$	VR13 VR17	Spurious MIN. $50 \mathrm{MHz}+2 \mathrm{MHz}$ neatly spurious MIN.	-60dB or more.
13. SWR protection	```1) Frequency:}52.000\textrm{MHz MODE :CW Transmit```	150Ω dummy load Through-type power meter	Rear panel	ANT	TX-RX (A/4)	IC11-VR1	40W	
$\begin{aligned} & \text { 14. FM MAX } \\ & \text { DEV } \end{aligned}$	1) Frequency: 52.050 MHz MODE : FM AG: $1 \mathrm{kHz} / 30 \mathrm{mV} \mathbf{E}$ $1 \mathrm{kHz} / 50 \mathrm{mV}$ K Transmit	Power meter Coupler Linear detector	Rear panel	ANT	PLL	VR2	\pm larger value should be 4.4 kHz .	$\pm 0.1 \mathrm{kHz}$
15. FM MIC sensitivity	```1) Frequency:}52.050\textrm{MHz MODE :FM AG:1kHz/3mV E 1kHz/5mV Transmit```	$\begin{aligned} & \text { AG } \\ & \text { AF V.M } \end{aligned}$	Front panel	MIC		VR1	$\pm 3.0 \mathrm{kHz}$	$\pm 0.1 \mathrm{kHz}$
16. AM MIC sensitivity	1) Frequency: 52.050 MHz MODE : AM AG: $1 \mathrm{kHz} / 3 \mathrm{mV}$ Transmit				TX-RX (A/4)	VR10	60\% modulation	
17. Sub tone	1) Frequency: 52.050 MHz MODE : FM M N: 1 push SPLIT : 1 push $A=B: 1$ push Transmit					VR3	$\pm 0.75 \mathrm{kHz}$	$\pm 0.1 \mathrm{kHz}$
18. Side tone	```1) Frequency: 52.000 MHz MODE: CW AF VR : Center KEY: DOWN Transmit```	Power meter Oscilloscope AF V.M	Rear panel	$\begin{aligned} & \text { ANT } \\ & \text { EXT. SP } \end{aligned}$	TX-RX	VR5	$0.2 \mathrm{~V} / 8 \Omega$	$\pm 0.02 \mathrm{~V}$
19. TX power	1) Frequency: 52.000 MHz	Power meter	Rear panel	ANT			Check	HI : 80~100W (AM : 15~30W) MID : 40~50W (AM : 10~20W) LOW : 8~12W (AM : 4~7W)

ADJUSTMENT

Adjustment Points

TX-RX UNIT (X57-4570-00) (A/4)

TX-RX UNIT (X57-4570-00) (A/4)
VR1: MIX BAL
VR2 : FM meter
VR3: SSB squelch
VR4 : RFG
VR5 : Side tone
VR6: Beep tone
VR7: MIC sensitivity
VR8, 9 : Suppression
VR10: MIX BIAS (AM)
VR11: MIX BIAS (CW)
VR12 : MIX BIAS (MAX)
VR13 : Spurious

VR14: Hi power
VR15: Low power
VR16: Mid power
VR17: Spurious
L15~17: MCF
L24~26, 28 : IF AMP
L38~40, 44~46, 48 : TX AMP
L66: RX AMP
VR1 in IC3: SSB S-meter (S1)
IFT in IC3: IF AMP
VR1 in IC11: SWR protection
VR2 in IC11: ALC voltage

PLL UNIT (X50-3200-00)

TX-RX UNIT (X57-4570-00) (C/4)

TX-RX UNIT (X57-4570-00) (C/4)
VR501 : Power frequency response TC501 : NULL

PLL UNIT (X50-3200-00)
VR1 : FM MIC sensitivity
VR2 : FM MAX DEV
VR3: Sub tone
L21~23: 75.045~75.545MHz
L27: 10.695 MHz
L28, 29 : 80MHz
L202, 203 : NB
TC1 : Reference OSC

FINAL UNIT (X45-3490-00)

FINAL UNIT (X45-3490-00)
VR1, 2 : Final idling current

TERMINAL FUNCTION

CNNo.	Pin No.	Name	Function
LCD ASSY (B38-0719-15)			
CN1	$\begin{gathered} \hline 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND LEN FSQ UEN1 SSO BLK 5 V NC 8 V RVR KAD1 AGND KAD2 ISV MUP MDN PSW EDP1 5A EDP2 CSS 14S LDA LCK 5 C	Digital ground. LCD control enable. FM squelch voltage. Shift register enable. SSB squelch voltage. All LCD segments off. 5 V . 8 V . RIT VR voltage. Key matrix voltage. Analog ground Key matrix voltage. IF SHIFT VR voltage. Microphone UP switch. Microphone DOWN switch. POWER switch. Encoder pulse. Analog 5V. Encoder pulse. PTT signal. 14 V . LCD control data. LCD control clock. 5.6 V for power switch.
CN2	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ \text { FSQ } \\ \text { SSQ } \\ \text { AGND } \\ \text { 5A } \\ \text { RVR } \\ \text { ISV } \\ \text { DGND } \end{gathered}$	AFVR-1. AF VR-2. AF VR-3 (ground). FM squelch setting voltage. SSB squelch setting voltage. Analog ground. Analog 5 V . RIT VR voltage. IF SHIFT VR voltage. Digital ground.
CN4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \text { DGND } \\ \text { EDP1 } \\ \text { EDP2 } \\ \text { NC } \\ \hline \end{gathered}$	Digital ground. Encoder pulse output. Encoder pulse output.
CN5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{gathered} \text { MIC } \\ \text { MICG } \\ \text { SPO } \\ \text { AGND } \\ \text { AF2 } \\ \text { AF1 } \\ \text { AFG } \\ \hline \end{gathered}$	MIC. MIC ground. Speaker output. Analog ground. AF VR-2. AFVR-1. AF VR-3 (ground).
FINAL UNIT (X45-3490-00)			
CN2	Coaxial	PO	High-frequency output.
CN3	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EALC } \\ & \text { EALG } \\ & \hline \end{aligned}$	External ALC. External ALC ground.
CN4	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	MOT+ MOT-	Fan power supply. Fan power supply.
CN101	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} \hline \text { AGND } \\ \text { AGND } \\ 14 \\ 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ \text { DGND } \\ 5 \mathrm{~V} \\ \text { PSC } \\ 8 \mathrm{~V} \\ \hline \end{gathered}$	Analog ground. Analog ground. Always 14V. 14 V when power is on. 14 V when power is on. Digital ground. 5 V when power is on. High when power switch is turned on. 8 V when power is on.

CN No.	Pin No.	Name	Function
	$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { TXB } \\ & \text { THP } \end{aligned}$	8 V in transmit mode. Final temperature detection.
CN102	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{AG} \\ 14 \mathrm{AF} \\ 8 \mathrm{~V} \\ 14 \mathrm{~S} \\ \hline \end{gathered}$	Ground for 14AF. 14 V when power is on (with filter). 8 V. 14 V when power is on.
CN103	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline \text { SEG } \\ \text { ES2 } \\ \text { ES1 } \\ \text { AGND } \\ \text { STS } \\ \text { KEY } \\ \hline \end{gathered}$	External speaker ground. External speaker. External speaker. Analog ground. Sidetone switch. CW keying output.
CN104	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ 8 \mathrm{~V} \\ \text { TXB } \\ 14 \mathrm{~S} \\ \text { THP } \end{gathered}$	14 V when power is on. 14 V when power is on. 8 V . 8 V in transmit mode. 14 V when power is on. Final temperature detection.
CN105	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	Always 14 V . Always 14 V .
W1 (1/2)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ 8 \mathrm{~V} \\ \mathrm{TXB} \\ \hline \end{gathered}$	14 V when power is on. 14 V when power is on. 8 V when power is on. 8 V in transmit mode.
W1 (2/2)	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \mathrm{~S} \\ & \mathrm{THP} \\ & \hline \end{aligned}$	14 V when power is on. Final temperature detection.
W2	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$	Always 14 V . Always 14 V .
W7	Coaxial	DRV	Drive input.
J1		RELAY	Linear relay control.
J2		EXT ALC	ALC input from linear.
J101		EXT SP	External speaker.
J102		KEY	CW key input.
DIGITAL UNIT (X46-318X-XX)			
CN1	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND LEN FSQ UEN1 SSO BLK 5 V NC 8 V RVR KAD1 AGND KAD2 ISV MUP MDN PSW EDP1 5A EDP2 CSS 14S LDA LCK 5C	Digital ground. LCD control enable. FM squelch voltage. Shift register enable 1. SSB squelch voltage. All LCD segments off. 5 V . 8 V . RIT VR voltage. Key matrix voltage. Analog ground. Key matrix voltage. IF SHIFT VR voltage. Microphone UP switch. Microphone DOWN switch. POWER switch. Encoder pulse. Analog 5 V . Encoder pulse. PTT signal. 14 V . LCD control data. LCD control clock. 5.6V for power switch.
CN2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { AB2 } \\ & \mathrm{DE} 2 \end{aligned}$	DDS2 (CAR) register selection. DDS2 (CAR) enable.

CNNo.	Pin No.	Name	Function
	$\begin{gathered} \hline 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	NBS RBK PCK PDA GND PE2 FMB TONE NFT	NB ON/OFF control. RX RF blanking output. PLL clock. PLL data. Ground. PLL2 (KCH14) enable. 8 V in FM mode, 0 V in other modes. Subtone output. OV in FM transmit mode, 5 V in other modes.
CN3	$\begin{gathered} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND AGND NC KYS KYB FMB TRC RXS BEEP AGS MGS FSQ SSQ BSY RBK SM UEN4 UCK UDA UEN5 NC UEN6 CKS NC PWM	Digital ground. Analog ground. Key jack input; when inserted. Key input. 8 V in FM mode, OV in other modes. TX/RX control signal. High in transmit mode. RXenable. Beep output. AGC slow/fast changeover. Microphone sensitivity selection. FM squelch voltage. SSB squelch voltage. Busy signal. RF blanking. Signal meter voltage. Shift register enable 4. Shift register clock. Shift register data. Shift register enable 5. Shift register enable 6. CKS control signal. Power meter voltage.
CN4	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{gathered}$	NC NC UEN2 UCK UDA 14 $14 S$ 5 V PSC 8V THP DGND	Shift register enable 2. Shift register clock. Shift register data. 14 V . 14 V . 5 V . Power relay control. 8 V . Final temperature detection. Digital ground.
CN5	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	NC ULK PE1 DE1 AB1 8 V 5 V GND C3 C2 C1	Unlock detection input. PLL1 (LO1) enable. DDS1 (LO1) enable. DDS1 (LO1) register selection. 8 V output. 5 V output. Ground. $0.03 \sim 10.4999 \mathrm{MHz}$. VCO $10.5 \sim 21.4999 \mathrm{MHz}$. selection line. $21.5 \sim 29.9999 \mathrm{MHz}$. Active high
CN6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	GND 5 V TXD RXD RTS CTS	Ground. 5 V output. Personal computer interface. Personal computer interface. Personal computer interface. Personal computer interface.

CNNo.	Pin No.	Name	Function
PLL UNIT (X50-3200-00)			
CN1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	FMM FMG NBI NBG	FM modulator input. Ground. NB amplifier signal input. Ground.
CN2	Coaxial	LO1	$\begin{array}{ll} \hline \text { LO1 output. } & 113.045 \sim 133.045 \mathrm{MHz}: \mathrm{K} \\ & 123.045 \sim 127.045 \mathrm{MHz}: \mathrm{E} \\ \hline \end{array}$
CN3	Coaxial	CAR	CAR output. 10.695 MHz .
CN4	Coaxial	LO2	LO2 output. 62.35 MHz .
CN5	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NC } \\ \text { ULK } \\ \text { PE1 } \\ \text { DE1 } \\ \text { AB1 } \\ 8 \mathrm{VV} \\ \text { SV } \\ \text { GND } \\ \text { C3 } \\ \text { C2 } \\ \text { C1 } \\ \hline \end{gathered}$	Unlock detection output. PLL1 (LO1) enable. DDS1 (LO1) enable. DDS1 (LO1) register selection. 8 V . 5 V . Ground. $0.03 \sim 10.4999 \mathrm{MHz}$. VCO $10.5 \sim 21.4999 \mathrm{MHz}$. selection line. $21.5 \sim 29.9999 \mathrm{MHz}$. Active high.
CN6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	AB2 DE2 NBS RBK PCK PDA GND PE2 FMB TONE NFT	DDS2 (CAR) register selection. DDS2 (CAR) enable. NB ON/OFF control. RX RF blanking input. PLL clock. PLL data. Ground. PLL2 (KCH14) enable. 8 V in FM mode, OV in other modes. Subtone input. OV in FM transmit mode. 5 V in other modes.
TX-RX UNIT (X57-4570-00)			
CN1	Coaxial	RAT	Receive signal input.
CN2	Coaxial	LO1	$\begin{array}{ll}\text { LO1 input. } & 113.045 \sim 133.045 \mathrm{MHz}: \mathrm{K} \\ & 123.045 \sim 127.045 \mathrm{MHz}: \mathrm{E}\end{array}$
CN3	Coaxial	LO2	LO2 input. 62.35 MHz .
CN4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NBI } \\ & \text { NBG } \\ & \text { NC } \end{aligned}$	10.695 MHz NB AMP output. NB ground.
CN10	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NC } \\ & \text { AF2 } \\ & \text { AF1 } \\ & \text { AFG } \\ & \hline \end{aligned}$	AF VR-2. AF VR-1. AF VR-3 (ground).
CN11	Coaxial	CAR	CAR input. 10.695 MHz .
CN12	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline \text { SP } \\ \text { SPG } \end{gathered}$	Speaker input. Speaker ground.
CN13	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PHG } \\ & \text { PH2 } \\ & \text { PH1 } \\ & \hline \end{aligned}$	Head phone ground. Head phone through. Head phone output.
CN14	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FMM } \\ & \text { FMG } \\ & \hline \end{aligned}$	FM MIC output. FM MIC ground.
CN15	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	NC MIC MICG SPO AGND	MIC. MIC ground. Speaker output (MIC connector). Analog ground.
CN16	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \hline \text { KEY } \\ \text { STS } \\ \text { AGND } \\ \text { ES1 } \end{gathered}$	CW keying. High : Key down. Sidetone switch. Analog ground. External speaker output.

TERMINAL FUNCTION

CN No.	Pin No.	Name	Function
	5	ES2	External speaker through.
	6	ESG	External speaker ground.
	7	14 S	14 l.
	8	$8 V$	8 BV.
	9	$14 A F$	14 V (For audio IC).
	10	$14 A G$	14 V (For audio IC).
CN17	1	DGND	Digital ground.
	2	AGND	Analog ground
	3	NC	
	4	KYS	Key jack input.
	5	KYB	Key input. High : Key down.
	6	FMB	8V in FM mode.
	7	TRC	TX/RX control. High in transmit mode.
	8	RXS	RX switch. High in receive mode.
	9	BEEP	Beep.
	10	AGS	AGC switch. Low : Fast.
	11	MGS	Microphone sensitivity switch.
	12	FSQ	FM squelch setting voltage.
	13	SSQ	SSB squelch setting voltage.
	14	BSY	Busy signal.
	15	RBK	RF blanking.
	16	SM	Signal strength meter voltage.
	17	UEN4	Shift register enable.
	18	UCK	Shift register clock.
	19	UDA	Shift register data.
	20	UEN5	Shift register enable.
	21	NC	
	22	UEN6	Shift register enable.
	23	CKS	CKY (keying) control. Hight in transmit mode.
	24	NC	
	25	PWM	Power meter voltage.
CN18	1	EALC	External ALC.
	2	EALG	External ALC ground.
	3	TXB	8V in transmit mode.
	4	VSR	Reflected wave voltage.
	5	VSF	Progressive wave voltage.
	6	AGND	Analog ground.
CN19	Coaxial	DRV	Drive output.
CN501	Coaxial	RAT	Receive signal input.

CN No.	Pin No.	Name	Function
CN502	1	AGND	Analog ground.
	2	VSF	Progressive wave voltage.
	3	VSR	Reflected wave voltage.
	4	TXB	Transmission power supply 8V.
CN503	1	THP	Temperature protection. High during operation.
	2	TXB	Transmission power supply 8V.
	3	8V	8V.
	4	PSC	14V power relay control.
			High when power is turned on.
	5	$5 V$	5 V.
	6	DGND	Digital ground.
	7	14 S	14V.
	8	14 S	14V.
	9	14	14 V.
	10	AGND	Analog ground.
	11	AGND	Analog ground.
CN504	1	NC	
	2	NC	
	3	UEN2	Shift register enable.
	4	UCK	Shift register clock.
	5	UDA	Shift register data.
	6	14	14 V.
	7	14 S	14V.
	8	5 V	5V.
	9	PSC	14V power relay control.
			High when power is turned on.
	10	$8 V$	$8 V$.
	11	THP	Temperature protection. High during operation.
	12	DGND	Digital ground.
CN505	Coaxial	PO	Filter input.
CN506	1	PHG	Head phone ground.
	2	PH2	Head phone output.
	3	PH1	Head phone input.
W2	1	DGND	Digital ground.
	2	EDP1	Encoder pulse output.
	3	EDP2	Encoder pulse output.
W502		ANT	Antenna.
W503		ANT GND	Antenna ground.

TS-60S circuit diagram

* Now Parts

Parts without Parts No. are not supplled.
Les artizles non mentionnes dens le Parts No. ne sont pas foumils
Te le omme Parts No. Werden nloht geliffert.
TS-60S

* New Parts

Parts without Parts No. are not supplled.
Les articles non mentionnes dans le Parts No. ne sont pas fournis
Teile ohne Parts No. werden niont geliefert.
TS-60S
FINAL UNIT ($\times 45-3490-00$)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas foumnls
Teile ohne Parts No. werden nicht geliefert.
FINAL UNIT ($\mathbf{X 4 5}$-3490-00)

＊New Parts

PARTS LIST

Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
FINAL UNIT（X45－3490－00）

Ref．No．参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号	Description 部 品 名／規 格	Desti－ nation仕向	Re－ marks備考
CN105			E40－3246－05	PIN CONNECTOR		
J1			E63－0401－05	PHQNQ JACK		
J2			E13－0166－05	PHONQ JACK		
J101			E11－0451－05	PHQNE JACK		
J102			E11－0450－05	PHQNE JACK		
TP1－3			E23－0512－05	TERMINAL		
W1			E37－0360－05	CONNECTING WIRE		
W2			E37－0361－05	CONNECTING WIRE		
W3			E37－0362－05	CQNNECTING WIRE（DC CABLE）		
W4			E37－0363－05	CONNECTING WIRE（EALC）		
W5			E37－0364－05	CONNECTING WIRE（PHQNE，KEY）		
W6			E37－0358－05	FLAT CABLE（TQ FILTER）		
W7			E37－0359－05	CONNECTING WIRE（DRIVE）		
W8			E31－3301－05	INSIDE CQNNECTING WIRE（PQ）		
110	3 E		F01－0994－02	HEAT SINK		
111	3 E		F10－2052－04	SHIELDING PLATE		
112	2 E		F20－1120－04	INSULATING BQARD		
113	1 E		F29－0014－05	INSULATQR		
F101			F53－0093－05	FUSE		
M1	3 E		F09－0438－05	FAN MQTQR		
115	2 F		G02－0574－04	FLAT SPRING（IC101，102）		
117	3 E		J99－0330－04	SHIELDING BQARD		
L1			L 40－1092－48	SMALL FIXED INDUCTQR（ 1 UH ）		
L2			L．40－1292－48	SMALL FIXED INDUCTOR（3．3UH）		
L3		＊	L39－1250－05	CQIL		
L4		＊	L39－1251－05	CQIL		
L5			L33－0699－05	CHQKE CQIL		
L6			L33－0617－05	CHOKE COIL		
L7			L33－0699－05	CHOKE CQIL		
L8			L33－0617－05	CHOKE CQIL		
L11			L33－0651－05	CHOKE CQIL		
L12			L33－0617－05	CHOKE CQIL		
L13		＊	L39－1248－15	CQIL		
L15			L40－3392－48	SMALL FIXED INDUCTQR（3．3UH）		
L17， 18			L40－4791－14	SMALL FIXED INDUCTOR		
L101			L15－0016－05	LQW－FREQENCY CHOKE CQIL		
L102			L40－1001－48	SMALL FIXED INDUCTOR		
M	1E，2E		N09－2187－05	SCREW（TRANSISTQR）		
N	3 E		N35－3020－46	BINDING HEAD MACHINE SCREW		
P	2E，2F		N87－3006－46	BRAZIER HEAD TAPTITE SCREW		
R2			RK73FB2A270J	CHIP R 27 J 1／10W		
R4			R92－0670－05	CHIP R 0 OHM		
R5			RK73FB2A681J	CHIP R 680 J 1／10W		
R6			RK73FB2A331J	CHIP R 330 J 1／10W		
R7			RK73FB2A471J	CHIP R 470 J 1／10W		
R8 ， 9			RK73FB2A4R7J	CHIP R 4.7 J $1 / 10 \mathrm{~W}$		
R10			R92－1242－05	FIXED RESISTQR 6.8 1／2W		
R11			R92－1243－05	FIXED RESISTQR 8.2		
R12， 13			R92－1209－05	CHIP R 15 J $1 / 4 \mathrm{~W}$		
R14， 15			R92－1292－05	FIXED RESISTQR 68 1W		
R16 R21		＊	$\begin{aligned} & \text { R92-1378-05 } \\ & \text { RS14DB3A150J } \end{aligned}$	FIXED RESISTQR 56 $1 / 4 \mathrm{~W}$ FL－PRQQF RS 15 J 1 W		

L：Scandinavia
Y：PX（Far East，Hawaii）

Y：AAFES（Europe）

K：USA
T：England
X：Australia

P：Canada
E：Europe
M：Other Areas

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
FINAL UNIT (X45-3490-00)

L:Scandinavia	K:USA	P:Canada
Y:PX(Far East, Hawaii)	T:England	E:Europe
Y:AAFES(Europe)	X:Australia.	M:Other Areas

＊New Parts
Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
DIGITAL UNIT（X46－318X－XX）

Ref．No． 参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号			Description品 名／規	格		$\begin{aligned} & \text { Desti- } \\ & \text { nation } \\ & \text { 仕 向 } \end{aligned}$	Re－ marks備考
C6－8			CK73FB1H102K	CHIP	C	1000PF	K			
C9			CK73FB1E103K	CHIP	C	0.01 UF	，			
C10－24			CK73FB1H102K	CHIP	C	1000PF	K			
C25， 26			CC73FCH1H101J	CHIP	C	100PF	J			
C27－29			CK73FB1E103K	CHIP	C	0.01 UF	K			
C30			CC73FCH1H101J	CHIP	C	100PF	J			
C31			CK73FB1H102K	CHIP	C	1000PF	K			
C32，33			CC73FCH1H330J	CHIP	C	33 PF	J			
C34			CK73FF1C105Z	CHIP	C	1．OUF	Z			
C35			CK73FF1E104Z	CHIP	C	0.1 UF	Z			
C36			CK73FB1H102K	CHIP	c	1000PF	k			
C37－45			CC73FCH1 H101 J	CHIP		100 PF	T			
C46			C92－0009－05	CHIP	tan	4.7 UF	10			
C47－54			CK73FB1H102K	CHIP	C	1000PF	K			
C55			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C56， 57			CK73FB1H102K	CHIP	C	1000PF	K			
C58			C92－0009－05	CHIP	TAN	4．7UF	10			
C59			CK73FF1C105Z	CHIP	C	1．OUF	Z			
C60			CK73FB1E103K	CHIP	C	0.01 UF	K			
C61， 62			CC73FCH1H101J	CHIP	C	100PF	J			
C63			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C64			CK73FB1H102K	CHIP	C	1000PF	，			
C65			C92－0009－05	CHIP	TAN	4．7UF	10			
C66－73			CK73FB1H102K	CHIP	C	1000PF	K			
C74			CK73EF1H104Z	CHIP	C	0.1 UF	Z			
C75			C92－0009－05	CHIP	TAN	4．7UF				
C76－77			CK73FB1H102K	CHIP	C	1000PF				
C78， 79			CK73FB1H102K	CHIP		1000PF	K			
C80－84			CK73FB1E103K	CHIP	C	0.01 UF	K			
CN1			E40－5314－05		CONNEC	TQR FQR IN	IDE	（25P）		
CN2			E40－5610－05		CQNNEC	TQR FOR IN	IDE	（11P）		
CN3			E40－5314－05	PIN	CONNEC	TQR FOR IN	IDE	（25P）		
CN4			E40－5301－05		CONNEC	TQR FQR IN	IDE	（12P）		
CN5			E40－5610－05	PIN	CONNEC	TOR FQR IN	IDE	（11P）		
CN6			E40－5183－05	PIN	CONNEC	TQR FQR IN	IDE	（6P）		
L1			L40－1801－18	SMAL	L FIXE	D INDUCTOR	18 U			
X1			L77－1522－05	CRYS	Stal Re	SQNATOR（7．	M HZ			
CP1			R90－0711－05	MUL	TI－COMP					
R1			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R2			RK73FB2A472J	CHIP	R	4.7 K	J	1／10W		
R3－5			RK73FB2A471J	CHIP	R	470		1／10W		
R6			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R7－11			RK73FB2A471J	CHIP	R	470	J	1／10W		
R12－19			RK73FB2A103J	CHIP	R	10K	J	1／10W		
R20－25			RK73FB2A221J	CHIP	R	220	J	1／10W		
R26			RK73FB2A105J	CHIP	R	1．OM	J	1／10W		
R27－31			RK73FB2A221J	CHIP	R	220	J	1／10W		
R32			RK73FB2A471J	CHIP	R	470	J	1／10W		
R33， 34			RK73FB2A221J	CHIP	R	220	J	1／10W		
R35			RK73FB2A471J	CHIP	R	470	J	1／10W		
R36			RK73FB2A223J	CHIP	R	22 K	J	1／10W		
R37－39			RK73FB2A471J	CHIP	R	470	J	1／10W		
R40， 41			RK73FB2A101J	CHIP	R	100	J	1／10W		

L：Scandinavia
Y：PX（Far East，Hawaii）
Y：AAFES（Europe）

K：USA
P：Canada
Y：PX（Far East，Hawaii）
T：England
E：Europe

* New Parts

PARTS LIST
Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
DIGITAL UNIT (X46-318X-XX)
IF UNIT (X48-3110-00)

Parts without Parts No. are not supplled.
Les articles non mentionnes danș le Parts No. ne sont pas fournis.
Telle ohne Parts No. werden nicht geliefert.

IF UNIT (X48-3110-00) PLL UNIT (X50-3200-00)

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
PLL UNIT (X50-3200-00)

* New Parts

PLL UNIT (X50-3200-00)

L:Scandinavia
Y:PX(Far East, Hawaii)

Y:AAFES(Europe)
K:USA
P:Canada
Y:PX(Far East, Hawaii)
T:Englan
X:Australia
E:Europe
M:Other Areas 4 indicates safety critical components.

PLL UNIT (X50-3200-00)

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
PLL UNIT (X50-3200-00) TX-RX UNIT (X57-4570-00)

L:Scandinavia	K:USA	P:Canada	
Y:PX(Far East, Hawaii)	T:England	E:Europe	
Y:AAFES(Europe)	X:Australia	M:Other Areas	indicates safety critical components.

TS-60S

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No، werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

PARTS LIST
Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les anticles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

PARTS LIST

* New Parts

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
TX-RX UNIT (X57-4570-00)

PARTS LIST

* New Parts

TX-RX UNIT (X57-4570-00)

PARTS LIST

＊New Parts
Parts without Parts No．are not supplied．
Les articles non mentionnes dans le Parts No．ne sont pas fournis．
Teile ohne Parts No．werden nicht geliefert．
TX－RX UNIT（X57－4570－00）

Ref．No．参 照 番 号	Address 位 置	$\begin{gathered} \text { New } \\ \text { Parts } \\ \text { 新 } \end{gathered}$	Parts No． 部 品 番 号	Description 部 品 名／規 格	Desti－ nation仕向	Re－ marks備考
D37			1 SS355	DIQRD（or		
D38， 39			DAN202K	DIQRD		
D40			1 SS355	DIQRD（or MA110）		
D41			RLS135	DIQRD		
D42			HSM88AS	DIQRD		
043			1 SS355	DIQRD（or MA110）		
D44			RLS1 35	DIQRD		
D46			1 SS355	DIQRD（or MA110）		
D49			RLS135	DIQRD		
D50			RD3．9M（B2）	DIQRD		
D51		＊	RD12M（B2）	DIQRD		
D501			DSA301LA	DIQRD		
D502			LFB01	DIQRD		
D503，504			1 SS101	DIQRD		
IC2			KCD04	HIC（FM IF）		
IC3			KCD08	HIC		
IC4			XRU4066BCF	IC or		
IC4			BU4066BCF	IC		
IC5			NJM2904M	IC（QP AMP X2）		
IC6			XRU4066BCF	IC（or BU4066BCF）		
IC7			UPC 1241 H	IC		
IC8			UPC1037HA	IC（DUBBLE BALANCE MQDULATQR）		
IC10			UPC78N05H	IC（VQLTAGE REGULATQR $/+8 \mathrm{~V}$ ）		
IC11			KCC08	HIC		
IC12， 13			TC9174F	IC（CMQS I／O EXTENSIQN）		
IC14			TA75S01F	IC		
01			DTA124EK	DIGITAL TRANSISTQR		
Q2			2SD1757K	TRANSISTQR		
Q3			2SA1213（Y）	TRANSISTQR		
Q4			DTC143TK	DIGITAL TRANSISTQR		
Q5－10			2SK520（K4．4）	FET		
Q11			2SC2954	TRANSISTQR		
Q12			DTA124EK	DIGITAL TRANSISTQR		
Q13			2SC4728（S）	TRANSISTQR		
Q14， 15			DTC143TK	DIGITAL TRANSISTQR		
016			2SA1213（Y）	TRANSISTQR		
017			3SK131（M）	FET		
Q18， 19			2SK520（K43）	FET		
020			RU201	TRANSISTQR		
021			3SK131（M）	FET		
022			2SC2712（Y）	TRANSISTQR		
Q23			RU201	TRANSISTQR		
024			2SC2712（Y）	TRANSISTQR		
025			2SJ106（GR）	FET		
Q26			FMC1	TRANSISTER		
Q27， 28			DTC124EK 2SC2712（GR）			
029			2SC2712（GR）	TRANSISTOR		
030			2SK210（GR）	FET		
031			2SA1162（Y）	TRANSISTQR		
032			FMC2	TRANSISTQR		
033			DTC124EK	DIGITAL TRANSISTQR		
034			2SC2712（Y）	TRANSISTQR		
035			2SD1757K	TRANSISTQR		
Q36， 37			DTC143EK	DIGITAL TRANSISTQR		
038，39			2SC3722K（R）	TRANSISTQR		

Y：PX（Far East，Hawaii） Y：AAFES（Europe）

K：USA
T：England
X：Australia

P：Canada
E：Europe
M：Other Areas
\} indicates safety critical components．

* New Parts

TX-RX UNIT (X57-4570-00)
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert. DDS (X58-4020-00)

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis. \quad DDS (X58-4020-00)
Teile ohne Parts No. werden nicht geliefert.
VCO (X58-4120-00)

PARTS LIST

* New Parts

VCO (X58-4120-00)
Parts without Parts No. are not supplied
ALC (X59-3990-00)
ees articles non mentionnes dans le Parts No. ne sont pas fournis.
DSST (X59-4000-00)

TS-60S

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile onne Parts No. werden nicht geliefert.
LCD ASSY (B38-0719-15)

TS-60S

* New Parts

PARTS LIST

Parts without Parts No. are not supplied.
Les articles non mentionnes dans le Parts No. ne sont pas fournis.
Teile ohne Parts No. werden nicht geliefert.
LCD ASSY (B38-0719-15)

L:Scandinavia	K:USA	P:Canada
Y:PX(Far East, Hawaii)	T:England	E:Europe
Y:AAFES(Europe)	X:Australia	M:Other Areas

EXPLODED VIEW

EXPLODED VIEW

TS-60S

EXPLODED VIEW

PACKING

ADJUSTMENT

Required Test Equipment

1. DC Voltmeter (DC V.M)
1) Input resistance: More than $1 \mathrm{M} \Omega$
2) Voltage range : 1.5 to $1000 \mathrm{~V} \mathrm{AC/DC}$

Note : A high-precision multimeter maybe used. However, accurate readings can not be obtained for high-impedance circuits.
2. AC Ammeter

1) Current range: $1.5 \mathrm{~A}, 3 \mathrm{~A}, 20 \mathrm{~A}$, High-precision ammeter may be used.
3. RF VTVM (RF V.M)
1) Input impedance : $1 \mathrm{M} \Omega$ and less than $3 p F$, min.
2) Voltage range : 10 mV to 300 V
3) Frequency range: 10 kHz to 100 MHz or greate.
4. AF Voltmeter (AF V.M)
1) Frequency range : 50 Hz to 10 kHz
2) Input resistance: $1 \mathrm{M} \Omega$ or greater
3) Voltage range : 10 mV to 30 V
5. AF Generator (AG)
1) Frequency range : 200 Hz to 5 kHz
2) Output: 1 mV or less to 1 V , low distortion
6. AF Dummy Load
1) Impedance : 8Ω
2) Dissipation: 3W or greater
7. Oscilloscope (SCOPE)

Vertical amplifier which has frequency characteristics higher than 100 MHz .
Requires high sensitivity, and external synchronization capabiliity.
8. Tracking Generator

1) Center frequency: 50 kHz to 90 MHz
2) Frequency deviation: Maximum $\pm 35 \mathrm{MHz}$
3) Output voltage : 0.1 V or greater
4) Sweep rate : At least $0.5 \mathrm{sec} / \mathrm{cm}$
9. Standard Signal Generator (SSG)
1) Frequency range: 50 kHz to 500 MHz
2) Output : $-133 \mathrm{dBm} / 0.05 \mu \mathrm{~V}$ to $7 \mathrm{dBm} / 0.5 \mu \mathrm{~V}$
3) Output impedance : 50Ω
4) $A M$ and $F M$ modulation can be possible

Note : Generator must be frequency stable.
10. Frequency Counter (f. counter)

1) Minimum input voltage : 50 mV
2) Frequency range : 500 MHz or greater
3) Output impedance : 50Ω
11. Noise Generator

Must generate ignition noise containing harmonics beyond 60 MHz .
12. RF Dummy Load

1) Impedance: 150Ω
2) Dissipation: 150W or greater
13. Power Meter
1) Impedance: 50Ω
2) Dissipation: 150W continuous or greater
3) Frequency limits: 60 MHz or greater
14. Spectrum Analyzer
1) Frequency range : 100 kHz to 500 MHz or greater
2) Bandwidth: 1 kHz to 3 MHz

15. Detector

1) For adjustment of PLLNCO BPF

16. Directional Coupler
17. Power Supply

PS-33, PS-53
18. Microphone

MC-47
19. Adjustment jig

EXtension cable (Use in common with TS-50S)

TS-60S

ADJUSTMENT

Use Method

ADJUSTMENT

ADJUSTMENT

Service Adjustment Mode

- Functions

*

1) Only the adjustment items on the service adjustment mode menu are set in service adjustment mode.
2) Adjusted data items A1 to AC in service adjustment mode are stored in the EEPROM.
3) When you enter service adjustment mode, data is read from the EEPROM into the RAM of the microcomputer. You can then modify the settings.
4) The EEPROM is updated only when a write operation is performed with the UP/DOWN key when in menu AD.
5) Two sets of the same data are written into the EEPROM to check whether the data has been written correctly. Data may not be written correctly if the power is turned off during writing.
6) When the power is turned on, the two sets of data are compared. If they are not the same, "Error" is displayed, not HELLO, and the default values for the unmatched data are used.
7) Adjusted menu numbers are backed up.
8) The following items are changed as shown to perform adjustment correctly in service adjustment mode. (When service adjustment mode ends, the original state returns.)

IF SHIFT \rightarrow Center (0 OHz)
RIT \rightarrow OFF
AIP, ATT \rightarrow OFF
$\mathrm{NB} \rightarrow \mathrm{OFF}$
AGC \rightarrow FAST
Transmit/receive carrier point correction \rightarrow Center (0 Hz)
Power $\rightarrow \mathrm{Hi}$
Filter FM mode (RX) \rightarrow OFF
Other mode $\rightarrow 2.4 \mathrm{k}$
9) A short tone is output when an item is changed with the UP/DOWN key. It is not output when repeating.

- Setting

1) Hold down the NB and MHz keys and switch the power on. (Turn the encoder to change the menu number.)
2) When the UP or DOWN key is pressed, the menu number is set.
3) Menu numbers A1 to A9 and AA to AC can be used in adjustment mode.
4) Press the CLR key to cancel adjustment mode. (It is also canceled when the power is turned off.)

Panel Operation

- Service adjustment mode
- Power on/off
- Service adjustment mode cancel

- PTT : TX/RX change
- MIC U/D SW : Service menu item U/D (with repeat)

ADJUSTMENT

Service Adjustment Mode Menu

Menu No.	Menu contents	State (display)	Initial value
A0	Checksum display	-	-
A1	RIT VR machine center correction	$00 \sim$ FF	80
A2	IF-SHIFT VR machine center correction	$00 \sim$ FF	80
A3	LSB carrier point adjustment	$-400 \sim+400$	0
A4	USB carrier point adjustment	$-400 \sim+400$	0
A5	S-meter curve adjustment (non- FM) S1	$00 \sim F F$	$2 E$
A6	S-meter curve adjustment (non- FM) S9	$00 \sim$ FF	73
A7	S-meter curve adjustment (non- FM) Full scale	$00 \sim$ FF	C2
A8	S-meter curve adjustment (FM) Start	$00 \sim$ FF	91
A9	S-meter curve adjustment (FM) Full scale	$00 \sim F F$	CC
AA	RF meter curve adjustment (low)	$00 \sim F F$	$3 C$
AB	RF meter curve adjustment (middle)	$00 \sim F F$	80
AC	RF meter curve adjustment (high)	$00 \sim F F$	B1
AD	Write into EEPROM	ready	ready
		run	
AE	All LCD segments on	good	

A0 : Checksum Display

- Adjustment function

Displays the version of the installed program.
Displays the two low-order bytes of the checksum
obtained by adding all program codes.

- Display

All other indicators are off.

ADJUSTMENT

A1 : RIT VR Mechanical Center Correction

- Adjustment function

Input the RIT control center position to the microcomputer so that the RIT frequency is zero when the RIT control is at its center position.

- Adjustment procedure

1. Set the RIT control to its center position.
2. Press the UP or DOWN key.

- Remarks

The center can be input unconditionally without pressing the UP/DOWN key. However, the UP/DOWN key must be pressed to prevent this menu item data from being modified accidentally when the RIT control is not at the center position.

When the UP/DOWN key is pressed, data is updated and the two displays match.

- Display

The input A/D value is displayed. (0-FFH)

The current A/D value for the RIT control center stored in the microcomputer is displayed. (0-FFH)

A2 : IF-SHIFT VR Mechanicale Center Correction

- Adjustment function

Input the IF-SHIFT control center position to the microcomputer so that the IF-SHIFT frequency is zero when the IF-SHIFT control is at its center position.

- Adjustment procedure

1. Set the IF-SHIFT control to its center position.
2. Press the UP or DOWN key.

- Remarks

The center can be input unconditionally without pressing the UP/DOWN key. However, the UP/DOWN key must be pressed to prevent this menu item data from being modified accidentally when the IF-SHIFT control is not at the center position.

When the UP/DOWN key is pressed, data is updated and the two displays match.

- Display

The input A/D value is displayed. (0-FFH)

The current A/D value for the IF-SHIFT control center stored in the microcomputer is displayed. ($0-\mathrm{FFH}$)

TS-60S

ADJUSTMENT

A3 : LSB Carrier Point Adjustment

- Adjustment function

Adjust the carrier point in $10-\mathrm{Hz}$ steps to correct variations in the center frequency of the IF filter in LSB mode.

- Adjustment procedure

1. Press the PTT button to enter transmit mode.
2. Change the correction frequency with the UP/ DOWN key or MIC UP/DOWN key.

- Remarks

The plus sign (+) indicates the direction of moving away from the carrier. (Same as IF-SHIFT)

The frequency and mode are forcibly changed to 51.9 MHz and LSB.

- Display

A4 : USB Carrier Point Adjustment

- Adjustment function

Adjust the carrier point in $10-\mathrm{Hz}$ steps to correct variations in the center frequency of the IF filter in USB mode.

- Remarks

The plus sign (+) indicates the direction of moving away from the carrier. (Same as IF-SHIFT)

The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Adjustment procedure

1. Press the PTT button to enter transmit mode.
2. Change the correction frequency with the UP/ DOWN key or MIC UP/DOWN key.

- Display

ADJUSTMENT

A5 : S-meter Curve Adjustment (S1) (non- FM) - Adjustment function

Input the S-meter voltage at which two bars of the S-meter light to the microcomputer to correct variations in the S1 level of the S-meter.

- Adjustment procedure

1. Input the specified leve! with the signal generator.
2. Press the UP or DOWN key.

- Display

- Remarks

The threshold is the input level minus the fixed value (6). When the input signal exceeds the threshold, one bar of the S-meter lights. The curve between S1 and S9 is obtained from the level for menus A5 and A6 by line approximation. Only the A/D values for the S1, S9, and full-scale levels are stored in the EEPROM. The meter bars operate according to the currently set curve: The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

A6 : S-meter Curve Adjustment (S9) (non- FM)

- Adjustment function

Input the S -meter voltage that indicates S 9 (the first large segment) to correct variations in the $\$ 9$ level of the S -meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The curve between S1 and S9 is obtained from the level for menus A5 and A6 by line approximation. The curve between S9 and full scale is obtained from the level for menus A6 and A7 by line approximation. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Display

ADJUSTMENT

A7 : S-meter Curve Adjustment (Full scale) (non- FM)

- Adjustment function

Input the S-meter voltage at which all the segments of the S- meter light to correct variations in the fullscale level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The curve between S9 and full scale is obtained from the level for menus A6 and A7 by line approximation. The meter bars operate according to the currently set curve. The curve is calculated when the UP/ DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and USB.

- Display

A8 : S-meter Curve Adjustment (S1) (FM)

- Adjustment function

Input the S-meter voltage at which two bars of the S -meter light to the microcomputer to correct variations in the S1 level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

The threshold is the input level minus the fixed value (12). When the input signal exceeds the threshold, one bar of the S-meter lights. The curve between S1 and full scale is obtained from the level for menus A8 and A9 by line approximation. Only the A/D values for the S1 and full-scale levels are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and FM .

- Display

ADJUSTMENT

A9 : S-meter Curve Adjustment (Full scale) (FM)

- Adjustment function

Input the S-meter voltage at which all the segments of the S- meter light to correct variations in the fullscale level of the S-meter.

- Adjustment procedure

1. Input the specified level with the signal generator.
2. Press the UP or DOWN key.

- Remarks

Only the A/D values for S1 and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are forcibly changed to 51.9 MHz and FM .

- Display

AA : RF Meter Curve Adjustment (Low)

- Adjustment function

Input the RF meter voltage at which six segments of the RF meter light to the microcomputer to correct variations in the low level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG from MIC connector.
2. Transmit.
3. Press the UP or DOWN key.

- Remarks

The threshold for the RF meter registering a signal is the input level minus the fixed value $(21 \mathrm{H})$. The curve is obtained from the level for menu AA and the start level by line approximation. The curve between 2 and 6 is obtained from the level for menus $A A$ and $A B$ by line approximation. Only the A/D values for 2,6 , and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are changed to 51.9 MHz and USB.

- Display

ADJUSTMENT

AB : RF Meter Curve Adjustment (Middle)

- Adjustment function

Input the RF meter voltage for segment 6 (the first large segment) to the microcomputer to correct variations in the middle level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG.
2. Transmit.
3. Press the UP or DOWN key.

- Remarks

The curve between 2 and 6 is obtained from the level for menus $A A$ and $A B$ by line approximation. The curve between 6 and full scale is obtained from the level for menus $A B$ and $A C$ by line approximation. Only the A/D values for 2,6 , and full scale are stored in the EEPROM. The meter bars operate according to the currently set curve. The curve is calculated when the UP/DOWN key is pressed. The frequency and mode are changed to 51.9 MHz and USB.

- Display

AC : RF Meter Curve Adjustment (High)

- Adjustment function

Input the RF meter voltage at which all the segments of the RF meter light to the microcomputer to correct variations in the full-scale level of the RF meter.

- Adjustment procedure

1. Input the specified level with the AG.
2. Transmit.
3. Press the UP or DOWN key.

- Display

TS-60S

ADJUSTMENT

AD : Write into EEPROM

- Adjustment function

Write data into the EEPROM.

- Adjustment procedure

1. Press the UP/DOWN key when "ready" is displayed.
2. While data is being written, "run" is displayed.
3. If the data is written correctly, "good" is displayed.
4. If a write error occurs, "error" is displayed.

Press the UP/DOWN key again.
If "error" is displayed repeatedly, check the EEPROM or other hardware for defects.

- Remarks

Writing is performed unconditionally (even if nothing has been changed). Two sets of the same data are written into the EEPROM. "good" is displayed only when both sets of data have been written normally. The UP/DOWN key is effective only when "ready" or "error" is displayed, and does not have the repeat function.

- Display

AE : All LCD Segments On

- Adjustment function

Check LCD cells and rubber connector connection.

- Display

TS-60S

ADJUSTMENT

Front Panel

Rear Panel

TS-60S

ADJUSTMENT

PLL and CAR Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		$\begin{array}{\|c\|} \hline \text { Test- } \\ \text { equipment } \\ \hline \end{array}$	Unit	Terminal	Unit	Parts	Method	
1. Setting	1) $D C I N: 13.8 \mathrm{~V}$ RIT VR : Center IF SHIFT VR : Center							
$\begin{aligned} & \text { 2. Reference } \\ & \text { OSC } \\ & \hline \end{aligned}$	1) MODE : FM	f. counter	PLL	TP1	PLL	TC1	20.000 .00 MHz .	$\pm 2 \mathrm{~Hz}$
$\begin{gathered} \text { 3. } \begin{array}{c} \mathrm{L} 28,29 \\ (80 \mathrm{MHz}) \\ \hline \end{array}{ }^{2} \mathrm{M} \\ \hline \end{gathered}$	1) MODE : FM	RF V.M		IC5-2 pin		$\begin{array}{\|l\|} \hline \text { L28 } \\ \text { L29 } \\ \hline \end{array}$	Peak	
$\begin{aligned} & \text { 4. } \mathrm{L} 21,22,23 \\ & (75.045 \sim \\ & 75.545 \mathrm{MHz}) \\ & \hline \end{aligned}$	1) Frequency: 51.900 MHz MODE : FM	RF V.M		TP3		$\begin{array}{\|l\|} \hline \text { L21~ } \\ \text { L23 } \end{array}$	Peak Align the core by screwing it in.	
5. Lock voltage	1) Frequency: 40.100 MHz MODE : LSB	DC V.M		TP2	VCO	TC1	2.8 V	$\pm 0.1 \mathrm{~V}$
	2) Frequency: 49.999 MHz MODE : FM						Check	5.0~8.0V
	3) Frequency: 50.000 MHz MODE: CW				VCO	TC2	2.8 V	$\pm 0.1 \mathrm{~V}$
	4) Frequency: 59.999 MHz Frequency: 53.999 MHz MODE : FM						Check	$5.0 \sim 8.0 \mathrm{~V}$ K 3.5 V or more
$\begin{aligned} & \text { 6. } 10.695 \mathrm{MHz} \\ & \text { level } \end{aligned}$	1) Frequency: 52.100 MHz MODE : CW	RF V.M 50Ω dummy load		TP4	PLL	L27	-4dBm	$\pm 1.0 \mathrm{dBm}$

Receiver Section Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		$\begin{gathered} \text { Test- } \\ \text { equipment } \end{gathered}$	Unit	Terminal	Unit	Parts	Method	
1. RFG	1) Frequency: 52.100 MHz MODE : FM	DC V.M	TX-RX	TP4	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	VR4	2.9 V	$\pm 0.03 \mathrm{~V}$
2. MCF	1) Frequency: 52.100 MHz MODE : FM Tracking generator output : -30dBm Spectrum analyzer setting Center frequency: 73.045 MHz Frequency span : 70 kHz ATT : 10dB V. REF : 2dB/DIV	Spectrum analyzer Tracking generator		TP2 TP1		$\begin{aligned} & \hline \text { L15~ } \\ & \text { L17 } \end{aligned}$	Repeat 2~3 times. Adjust it to make gain maximum, and make the band flat as shown in the right.	
3. IF AMP	1) Frequency : 52.099 MHz MODE : USB SSG ATT : $0.25 \sim 0.5 \mu \mathrm{~V}$ $(-119 \sim-113 \mathrm{dBm})$	SSGDM. SPOscilloscopeAF V.M	Rear panel	ANTEXT. SP	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	L66 L24~ L26, L28 IF in IC3 (2 pcs)	Repeat $2 \sim 3$ times. AF output MAX.	
4. MIX BAL	```1) Frequency: }52.099MH MODE : USB SSG RF: OFF AIP: OFF```					VR1	AF output MIN.	
$\begin{aligned} & \text { 5. SSB S-meter } \\ & \text { (S1) } \end{aligned}$	1) Frequency: 52.099 MHz MODE : USB SSG RF: OFF	$\begin{aligned} & \text { SSG } \\ & \text { DC V.M } \end{aligned}$	Rear panel TX-RX (A/4)	ANT TP5	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$		Record voltage.	
	2) SSG ATT : $0.7 \mu \mathrm{~V}(-110 \mathrm{dBm})$					VR in IC3	Record voltage +0.1 V .	
	3) Service adjustment mode menu No. (S MENU No.) : A5 SSG ATT: $1 \mu \mathrm{~V}(-107 \mathrm{dBm})$						UP or DOWN key : 1 push	S1 check
(S9)	4) S MENU No. : A6 SSG ATT : $20 \mu \mathrm{~V}(-81 \mathrm{dBm})$							S9 check

ADJUSTMENT

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
12. Noise	1) Frequency : 52.099 MHz MODE : USB AF VR : MIN	SSG DM. SP. Oscilloscope AF V.M	Rear panel	ANT EXT. SP			Check	$2 \mathrm{mV} / 8 \Omega$ or less
13. Reset	1) POWER SW: OFF While pushing the $A=B$ key POWER SW: ON						Reset display f. : 51.000 .0 kHz VFO : A MODE : FM	

Transmitter Section Adjustment

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
1. ALC voltage	1) Frequency: 53.900 MHz MODE: CW Remove the cable from CN19 to the TX-RX unit. Transmit	DC V.M 50Ω dymmy load	TX-RX (A/4) Rear panel	TP6 (ALC) ANT	$\begin{aligned} & \text { TX-RX } \\ & \text { (A/4) } \end{aligned}$	IC11-VR2	2.7 V	$\pm 0.05 \mathrm{~V}$
2. TX AMP	```1) Frequency:}53.900\textrm{MHz MODE:CW Transmit```	Synchro scope or Spectrum analyzer 50Ω dummy load	$\begin{array}{\|l} \hline \text { TX-RX } \\ (\mathrm{A} / 4) \end{array}$ Rear panel	CN19 ANT	$\begin{aligned} & \text { TX-RX } \\ & (\mathrm{A} / 4) \end{aligned}$	$\begin{aligned} & \text { L38~ } \\ & \text { L40 } \\ & \text { L44~ } \\ & \text { L46 } \\ & \text { L48 } \end{aligned}$	Repeat 2~3 times for MAX.	
3. MIX BIAS	$\begin{aligned} & \text { 1) Frequency: } 53.900 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \\ & \hline \end{aligned}$					VR12	Level MAX.	
(CW level) (AM level)	2) Transmit					VR11	Level MAX.	
	3) MODE : AM Transmit After adjusted, CN19 connect.					VR10	Level MAX.	
4. Final idling current	1) Frequency: 51.900 MHz MODE : USB Final unit VR1, VR2 : MIN Transmit	Power meter DC V.M	Rear panel	ANT	Final		Record current at VR1 and VR2 are MIN.	This current is total current.
						VR1	Total current + 250 mA .	
						VR2	(Total current + $250 \mathrm{~mA})+250 \mathrm{~mA}$.	
5. NULL	```1) Frequency:}52.000\textrm{MHz MODE : CW Transmit```	DC V.M	$\begin{aligned} & \hline T X-R X \\ & (C / 4) \end{aligned}$	CN502-2	$\begin{aligned} & \text { TX-RX } \\ & \text { (C/4) } \end{aligned}$	TC501	Voltage MIN.	Reference value : 50 mV or less
$\begin{array}{\|c} \text { 6. Power } \\ \text { (HI) } \\ \text { (MID) } \end{array}$	$\begin{aligned} & \text { 1) Frequency: } 52.000 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \\ & \hline \end{aligned}$	Power meter	Rear panel	ANT	TX-RX	VR14	95W	
	$\begin{aligned} & \text { 2) Frequency : } 52.000 \mathrm{MHz} \\ & \text { MODE : CW } \\ & \text { Transmit } \end{aligned}$					VR16	45W	
(LOW)	```3) Frequency: }52.000\textrm{MHz MODE : CW Transmit```					VR15	10W	
7. Power frequency response	1) Frequency: 53.900 MHz MODE : CW Transmit				$\begin{aligned} & \hline \text { TX-RX } \\ & (C / 4) \end{aligned}$	VR501	MAX.	90W or more.
8. RF meter (FULL)	1) Frequency: 51.900 MHz MODE : USB S MENU No. : AC TX output : 80W Transmit	Power meter AG	Rear panel Front panel	$\begin{aligned} & \text { ANT } \\ & \text { MIC } \end{aligned}$			UP or DOWN key : 1 push	Full scale check.

ADJUSTMENT

Item	Condition	Measurement			Adjustment			Specifications/Remarks
		Testequipment	Unit	Terminal	Unit	Parts	Method	
(2)	2) S MENU No. : AA TX output: 18W Transmit	Power meter$A G$	Rear panel Front panel	ANT MIC			Up or DOWN key : 1 push	RF-meter "2" check.
(6)	3) S MENU No. : AB TX output: 40W Transmit							RF-meter "6" check.
9. CAR point	1) S MUNE No. : A3 or A4 (A3 : LSB, A4 : USB) AG1: $300 \mathrm{~Hz} / 1.2 \mathrm{mV}$ AG2 : $2700 \mathrm{~Hz} / 2 \mathrm{mV}$ AG output : Level at which not activated. Transmit	Power meter Oscilloscope AG AF V.M	Rear panel Front panel	ANT MIC			Adjust so that waveform cross by UP and DOWN key.	
10. Suppression	1) Frequency: 52.000 MHz MODE : USB Transmit	Power meter Coupler Oscilloscope	Rear panel	ANT	$\begin{aligned} & \hline \begin{array}{l} \text { TX-RX } \\ \text { (A/4) } \end{array} \end{aligned}$	VR8 VR9	MIN. Set it to the minimum value by adjusting in the USB and modes alternately near the center of the VR.	-40 dB or more.
11. MIC sensitivity	```1) Frequency: }52.000\textrm{MHz MODE : USB AG: 1kHz/3mV Transmit```	Power meter AG AF V.M	Rear panel Front panel	$\begin{aligned} & \text { ANT } \\ & \text { MIC } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { TX-RX } \\ (A / 4) \end{array} \end{aligned}$	VR7	60W	$\pm 1.0 \mathrm{~W}$
12. Spurious	1) Frequency: 50.000 MHz MODE : CW Transmit	Power meter Coupler Spectrum analyzer	Rear panel	ANT	$\begin{aligned} & \begin{array}{l} \text { TX-RX } \\ (A / 4) \end{array} \end{aligned}$	VR13 VR17	Spurious MIN. $50 \mathrm{MHz}+2 \mathrm{MHz}$ neatly spurious MIN.	-60dB or more.
13. SWR protection	```1) Frequency:}52.000\textrm{MHz MODE :CW Transmit```	150Ω dummy load Through-type power meter	Rear panel	ANT	TX-RX (A/4)	IC11-VR1	40W	
$\begin{aligned} & \text { 14. FM MAX } \\ & \text { DEV } \end{aligned}$	1) Frequency: 52.050 MHz MODE : FM AG: $1 \mathrm{kHz} / 30 \mathrm{mV} \mathbf{E}$ $1 \mathrm{kHz} / 50 \mathrm{mV}$ K Transmit	Power meter Coupler Linear detector	Rear panel	ANT	PLL	VR2	\pm larger value should be 4.4 kHz .	$\pm 0.1 \mathrm{kHz}$
15. FM MIC sensitivity	```1) Frequency:}52.050\textrm{MHz MODE :FM AG:1kHz/3mV E 1kHz/5mV Transmit```	$\begin{aligned} & \text { AG } \\ & \text { AF V.M } \end{aligned}$	Front panel	MIC		VR1	$\pm 3.0 \mathrm{kHz}$	$\pm 0.1 \mathrm{kHz}$
16. AM MIC sensitivity	1) Frequency: 52.050 MHz MODE : AM AG: $1 \mathrm{kHz} / 3 \mathrm{mV}$ Transmit				TX-RX (A/4)	VR10	60\% modulation	
17. Sub tone	1) Frequency: 52.050 MHz MODE : FM M N: 1 push SPLIT : 1 push $A=B: 1$ push Transmit					VR3	$\pm 0.75 \mathrm{kHz}$	$\pm 0.1 \mathrm{kHz}$
18. Side tone	```1) Frequency: 52.000 MHz MODE: CW AF VR : Center KEY: DOWN Transmit```	Power meter Oscilloscope AF V.M	Rear panel	$\begin{aligned} & \text { ANT } \\ & \text { EXT. SP } \end{aligned}$	TX-RX	VR5	$0.2 \mathrm{~V} / 8 \Omega$	$\pm 0.02 \mathrm{~V}$
19. TX power	1) Frequency: 52.000 MHz	Power meter	Rear panel	ANT			Check	HI : 80~100W (AM : 15~30W) MID : 40~50W (AM : 10~20W) LOW : 8~12W (AM : 4~7W)

ADJUSTMENT

Adjustment Points

TX-RX UNIT (X57-4570-00) (A/4)

TX-RX UNIT (X57-4570-00) (A/4)
VR1: MIX BAL
VR2 : FM meter
VR3: SSB squelch
VR4 : RFG
VR5 : Side tone
VR6: Beep tone
VR7: MIC sensitivity
VR8, 9 : Suppression
VR10: MIX BIAS (AM)
VR11: MIX BIAS (CW)
VR12 : MIX BIAS (MAX)
VR13 : Spurious

VR14: Hi power
VR15: Low power
VR16: Mid power
VR17: Spurious
L15~17: MCF
L24~26, 28 : IF AMP
L38~40, 44~46, 48 : TX AMP
L66: RX AMP
VR1 in IC3: SSB S-meter (S1)
IFT in IC3: IF AMP
VR1 in IC11: SWR protection
VR2 in IC11: ALC voltage

PLL UNIT (X50-3200-00)

TX-RX UNIT (X57-4570-00) (C/4)

TX-RX UNIT (X57-4570-00) (C/4)
VR501 : Power frequency response TC501 : NULL

PLL UNIT (X50-3200-00)
VR1 : FM MIC sensitivity
VR2 : FM MAX DEV
VR3: Sub tone
L21~23: 75.045~75.545MHz
L27: 10.695 MHz
L28, 29 : 80MHz
L202, 203 : NB
TC1 : Reference OSC

FINAL UNIT (X45-3490-00)

FINAL UNIT (X45-3490-00)
VR1, 2 : Final idling current

TERMINAL FUNCTION

CNNo.	Pin No.	Name	Function
LCD ASSY (B38-0719-15)			
CN1	$\begin{gathered} \hline 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND LEN FSQ UEN1 SSO BLK 5 V NC 8 V RVR KAD1 AGND KAD2 ISV MUP MDN PSW EDP1 5A EDP2 CSS 14S LDA LCK 5 C	Digital ground. LCD control enable. FM squelch voltage. Shift register enable. SSB squelch voltage. All LCD segments off. 5 V . 8 V . RIT VR voltage. Key matrix voltage. Analog ground Key matrix voltage. IF SHIFT VR voltage. Microphone UP switch. Microphone DOWN switch. POWER switch. Encoder pulse. Analog 5V. Encoder pulse. PTT signal. 14 V . LCD control data. LCD control clock. 5.6 V for power switch.
CN2	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ \text { FSQ } \\ \text { SSQ } \\ \text { AGND } \\ \text { 5A } \\ \text { RVR } \\ \text { ISV } \\ \text { DGND } \end{gathered}$	AFVR-1. AF VR-2. AF VR-3 (ground). FM squelch setting voltage. SSB squelch setting voltage. Analog ground. Analog 5 V . RIT VR voltage. IF SHIFT VR voltage. Digital ground.
CN4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \text { DGND } \\ \text { EDP1 } \\ \text { EDP2 } \\ \text { NC } \\ \hline \end{gathered}$	Digital ground. Encoder pulse output. Encoder pulse output.
CN5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{gathered} \text { MIC } \\ \text { MICG } \\ \text { SPO } \\ \text { AGND } \\ \text { AF2 } \\ \text { AF1 } \\ \text { AFG } \\ \hline \end{gathered}$	MIC. MIC ground. Speaker output. Analog ground. AF VR-2. AFVR-1. AF VR-3 (ground).
FINAL UNIT (X45-3490-00)			
CN2	Coaxial	PO	High-frequency output.
CN3	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EALC } \\ & \text { EALG } \\ & \hline \end{aligned}$	External ALC. External ALC ground.
CN4	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	MOT+ MOT-	Fan power supply. Fan power supply.
CN101	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} \hline \text { AGND } \\ \text { AGND } \\ 14 \\ 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ \text { DGND } \\ 5 \mathrm{~V} \\ \text { PSC } \\ 8 \mathrm{~V} \\ \hline \end{gathered}$	Analog ground. Analog ground. Always 14V. 14 V when power is on. 14 V when power is on. Digital ground. 5 V when power is on. High when power switch is turned on. 8 V when power is on.

CN No.	Pin No.	Name	Function
	$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { TXB } \\ & \text { THP } \end{aligned}$	8 V in transmit mode. Final temperature detection.
CN102	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{AG} \\ 14 \mathrm{AF} \\ 8 \mathrm{~V} \\ 14 \mathrm{~S} \\ \hline \end{gathered}$	Ground for 14AF. 14 V when power is on (with filter). 8 V. 14 V when power is on.
CN103	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline \text { SEG } \\ \text { ES2 } \\ \text { ES1 } \\ \text { AGND } \\ \text { STS } \\ \text { KEY } \\ \hline \end{gathered}$	External speaker ground. External speaker. External speaker. Analog ground. Sidetone switch. CW keying output.
CN104	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ 8 \mathrm{~V} \\ \text { TXB } \\ 14 \mathrm{~S} \\ \text { THP } \end{gathered}$	14 V when power is on. 14 V when power is on. 8 V . 8 V in transmit mode. 14 V when power is on. Final temperature detection.
CN105	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	Always 14 V . Always 14 V .
W1 (1/2)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14 \mathrm{~S} \\ 14 \mathrm{~S} \\ 8 \mathrm{~V} \\ \mathrm{TXB} \\ \hline \end{gathered}$	14 V when power is on. 14 V when power is on. 8 V when power is on. 8 V in transmit mode.
W1 (2/2)	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \mathrm{~S} \\ & \mathrm{THP} \\ & \hline \end{aligned}$	14 V when power is on. Final temperature detection.
W2	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$	Always 14 V . Always 14 V .
W7	Coaxial	DRV	Drive input.
J1		RELAY	Linear relay control.
J2		EXT ALC	ALC input from linear.
J101		EXT SP	External speaker.
J102		KEY	CW key input.
DIGITAL UNIT (X46-318X-XX)			
CN1	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND LEN FSQ UEN1 SSO BLK 5 V NC 8 V RVR KAD1 AGND KAD2 ISV MUP MDN PSW EDP1 5A EDP2 CSS 14S LDA LCK 5C	Digital ground. LCD control enable. FM squelch voltage. Shift register enable 1. SSB squelch voltage. All LCD segments off. 5 V . 8 V . RIT VR voltage. Key matrix voltage. Analog ground. Key matrix voltage. IF SHIFT VR voltage. Microphone UP switch. Microphone DOWN switch. POWER switch. Encoder pulse. Analog 5 V . Encoder pulse. PTT signal. 14 V . LCD control data. LCD control clock. 5.6V for power switch.
CN2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { AB2 } \\ & \mathrm{DE} 2 \end{aligned}$	DDS2 (CAR) register selection. DDS2 (CAR) enable.

CNNo.	Pin No.	Name	Function
	$\begin{gathered} \hline 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	NBS RBK PCK PDA GND PE2 FMB TONE NFT	NB ON/OFF control. RX RF blanking output. PLL clock. PLL data. Ground. PLL2 (KCH14) enable. 8 V in FM mode, 0 V in other modes. Subtone output. OV in FM transmit mode, 5 V in other modes.
CN3	$\begin{gathered} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{gathered}$	DGND AGND NC KYS KYB FMB TRC RXS BEEP AGS MGS FSQ SSQ BSY RBK SM UEN4 UCK UDA UEN5 NC UEN6 CKS NC PWM	Digital ground. Analog ground. Key jack input; when inserted. Key input. 8 V in FM mode, OV in other modes. TX/RX control signal. High in transmit mode. RXenable. Beep output. AGC slow/fast changeover. Microphone sensitivity selection. FM squelch voltage. SSB squelch voltage. Busy signal. RF blanking. Signal meter voltage. Shift register enable 4. Shift register clock. Shift register data. Shift register enable 5. Shift register enable 6. CKS control signal. Power meter voltage.
CN4	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{gathered}$	NC NC UEN2 UCK UDA 14 $14 S$ 5 V PSC 8V THP DGND	Shift register enable 2. Shift register clock. Shift register data. 14 V . 14 V . 5 V . Power relay control. 8 V . Final temperature detection. Digital ground.
CN5	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	NC ULK PE1 DE1 AB1 8 V 5 V GND C3 C2 C1	Unlock detection input. PLL1 (LO1) enable. DDS1 (LO1) enable. DDS1 (LO1) register selection. 8 V output. 5 V output. Ground. $0.03 \sim 10.4999 \mathrm{MHz}$. VCO $10.5 \sim 21.4999 \mathrm{MHz}$. selection line. $21.5 \sim 29.9999 \mathrm{MHz}$. Active high
CN6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	GND 5 V TXD RXD RTS CTS	Ground. 5 V output. Personal computer interface. Personal computer interface. Personal computer interface. Personal computer interface.

CNNo.	Pin No.	Name	Function
PLL UNIT (X50-3200-00)			
CN1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	FMM FMG NBI NBG	FM modulator input. Ground. NB amplifier signal input. Ground.
CN2	Coaxial	LO1	$\begin{array}{ll} \hline \text { LO1 output. } & 113.045 \sim 133.045 \mathrm{MHz}: \mathrm{K} \\ & 123.045 \sim 127.045 \mathrm{MHz}: \mathrm{E} \\ \hline \end{array}$
CN3	Coaxial	CAR	CAR output. 10.695 MHz .
CN4	Coaxial	LO2	LO2 output. 62.35 MHz .
CN5	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NC } \\ \text { ULK } \\ \text { PE1 } \\ \text { DE1 } \\ \text { AB1 } \\ 8 \mathrm{VV} \\ \text { SV } \\ \text { GND } \\ \text { C3 } \\ \text { C2 } \\ \text { C1 } \\ \hline \end{gathered}$	Unlock detection output. PLL1 (LO1) enable. DDS1 (LO1) enable. DDS1 (LO1) register selection. 8 V . 5 V . Ground. $0.03 \sim 10.4999 \mathrm{MHz}$. VCO $10.5 \sim 21.4999 \mathrm{MHz}$. selection line. $21.5 \sim 29.9999 \mathrm{MHz}$. Active high.
CN6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	AB2 DE2 NBS RBK PCK PDA GND PE2 FMB TONE NFT	DDS2 (CAR) register selection. DDS2 (CAR) enable. NB ON/OFF control. RX RF blanking input. PLL clock. PLL data. Ground. PLL2 (KCH14) enable. 8 V in FM mode, OV in other modes. Subtone input. OV in FM transmit mode. 5 V in other modes.
TX-RX UNIT (X57-4570-00)			
CN1	Coaxial	RAT	Receive signal input.
CN2	Coaxial	LO1	$\begin{array}{ll}\text { LO1 input. } & 113.045 \sim 133.045 \mathrm{MHz}: \mathrm{K} \\ & 123.045 \sim 127.045 \mathrm{MHz}: \mathrm{E}\end{array}$
CN3	Coaxial	LO2	LO2 input. 62.35 MHz .
CN4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NBI } \\ & \text { NBG } \\ & \text { NC } \end{aligned}$	10.695 MHz NB AMP output. NB ground.
CN10	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NC } \\ & \text { AF2 } \\ & \text { AF1 } \\ & \text { AFG } \\ & \hline \end{aligned}$	AF VR-2. AF VR-1. AF VR-3 (ground).
CN11	Coaxial	CAR	CAR input. 10.695 MHz .
CN12	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline \text { SP } \\ \text { SPG } \end{gathered}$	Speaker input. Speaker ground.
CN13	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PHG } \\ & \text { PH2 } \\ & \text { PH1 } \\ & \hline \end{aligned}$	Head phone ground. Head phone through. Head phone output.
CN14	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FMM } \\ & \text { FMG } \\ & \hline \end{aligned}$	FM MIC output. FM MIC ground.
CN15	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	NC MIC MICG SPO AGND	MIC. MIC ground. Speaker output (MIC connector). Analog ground.
CN16	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \hline \text { KEY } \\ \text { STS } \\ \text { AGND } \\ \text { ES1 } \end{gathered}$	CW keying. High : Key down. Sidetone switch. Analog ground. External speaker output.

TERMINAL FUNCTION

CN No.	Pin No.	Name	Function
	5	ES2	External speaker through.
	6	ESG	External speaker ground.
	7	14 S	14 l.
	8	$8 V$	8 BV.
	9	$14 A F$	14 V (For audio IC).
	10	$14 A G$	14 V (For audio IC).
CN17	1	DGND	Digital ground.
	2	AGND	Analog ground
	3	NC	
	4	KYS	Key jack input.
	5	KYB	Key input. High : Key down.
	6	FMB	8V in FM mode.
	7	TRC	TX/RX control. High in transmit mode.
	8	RXS	RX switch. High in receive mode.
	9	BEEP	Beep.
	10	AGS	AGC switch. Low : Fast.
	11	MGS	Microphone sensitivity switch.
	12	FSQ	FM squelch setting voltage.
	13	SSQ	SSB squelch setting voltage.
	14	BSY	Busy signal.
	15	RBK	RF blanking.
	16	SM	Signal strength meter voltage.
	17	UEN4	Shift register enable.
	18	UCK	Shift register clock.
	19	UDA	Shift register data.
	20	UEN5	Shift register enable.
	21	NC	
	22	UEN6	Shift register enable.
	23	CKS	CKY (keying) control. Hight in transmit mode.
	24	NC	
	25	PWM	Power meter voltage.
CN18	1	EALC	External ALC.
	2	EALG	External ALC ground.
	3	TXB	8V in transmit mode.
	4	VSR	Reflected wave voltage.
	5	VSF	Progressive wave voltage.
	6	AGND	Analog ground.
CN19	Coaxial	DRV	Drive output.
CN501	Coaxial	RAT	Receive signal input.

CN No.	Pin No.	Name	Function
CN502	1	AGND	Analog ground.
	2	VSF	Progressive wave voltage.
	3	VSR	Reflected wave voltage.
	4	TXB	Transmission power supply 8V.
CN503	1	THP	Temperature protection. High during operation.
	2	TXB	Transmission power supply 8V.
	3	8V	8V.
	4	PSC	14V power relay control.
			High when power is turned on.
	5	$5 V$	5 V.
	6	DGND	Digital ground.
	7	14 S	14V.
	8	14 S	14V.
	9	14	14 V.
	10	AGND	Analog ground.
	11	AGND	Analog ground.
CN504	1	NC	
	2	NC	
	3	UEN2	Shift register enable.
	4	UCK	Shift register clock.
	5	UDA	Shift register data.
	6	14	14 V.
	7	14 S	14V.
	8	5 V	5V.
	9	PSC	14V power relay control.
			High when power is turned on.
	10	$8 V$	$8 V$.
	11	THP	Temperature protection. High during operation.
	12	DGND	Digital ground.
CN505	Coaxial	PO	Filter input.
CN506	1	PHG	Head phone ground.
	2	PH2	Head phone output.
	3	PH1	Head phone input.
W2	1	DGND	Digital ground.
	2	EDP1	Encoder pulse output.
	3	EDP2	Encoder pulse output.
W502		ANT	Antenna.
W503		ANT GND	Antenna ground.

TS-60S circuit diagram

FINAL UNIT (X45-3490-00) Component side view

FINAL UNIT (X45-3490-00) Foil side view

\square : Component side

LCD ASSY (B38-0719-15) Component side view
μ PD6345GS

TC4S584F

TC4SU69F

2SA1307
LCD ASSY (B38-0719-15) Foil side view

2SA1162
2SC2712

pC board views TS-6(

circuit diagram TS-60S

2SC3421
NJM2902M
$\mu \mathrm{PC} 7805 \mathrm{H}$ $\mu \mathrm{PC} 7808 \mathrm{H}$

DIGITAL UNIT (X46-318X-XX) 0-11: K 2-71: E Component side view

TC74HC573AF

AT93C66-10SI2.7 NM93C66LEM8 M62003FP

NJM78L05UA

2 SC2712
DTA143TK
DTC143EK

DIGITAL UNIT (X46-318X-XX) 0-11: K 2-71: E Foil side view

circuit diagram TS-60S

TS-60S pc board views

PLL UNIT (X50-3200-00) Component side view

PLL UNIT (X50-3200-00) Foil side view

pc board views TS-60S

DDS (X58-4020-00) Component side view

DDS (X58-4020-00) Foil side view

: Component side
\square : Foil side

TS-60S pc board views

VCO (X58-4120-00) Component side view

VCO (X58-4120-00) Foil side view

PLL UNIT (X50-3200-00)

2SC2954

CXD1225M

μ PD74HC390G

SN16913P

SN76514N

SC7S04F TC7S04F

F71022

2SK508NV

$R \nmid 201$

circuit diagram TS-60S

IF UNIT (X48-3110-00) Component side view

IF UNIT (X48-3110-00) Foil side view

ALC (X59-3990-00)
Component side view

ALC (X59-3990-00)
Foil side view

TX-RX UNIT (X57-4570-00) Component side view

TX-RX UNIT (X57-4570-00) Foil side view

DSST (X59-4000-00) Component side view

DSST (X59-4000-00) Foil side view

NJM2904M

FMA3
FMC1
FMC2

TX-RX UNIT (X57-4570-00) (C/4)

TS-60S
 TS-6C
 BLOCK DIAGRAM

TS-60S IAGRAM

MB-13 (MOUNTING BRACKET) / PG-2Y (DC CABLE)

MB-13 External View

MB-13 Specifications
Dimensions $66 \mathrm{~W} \times 196 \mathrm{D} \times 90 \mathrm{H}(\mathrm{mm})$
Weight 500 g

MB-13 Parts List

Parts No.	New parts	Description
A13-0668-04		Angle
D10-0615-04		Lever (R)
D10-0616-04		Lever (L)
G01-0873-04		Spring coil
G13-0823-04		Cushion
		Mounting hardware (R)
J21-4433-04		Mounting hardware (R)
J21-4434-04		Mounting hardware (L)
J21-4435-04		Mounting hardware (L)
J21-4436-04		Round boss
J32-0922-04		Hex. screw (Accessory)
N09-0008-04		Tapping screw (Accessory)
N09-0632-05		Flange nut (Accessory)
N14-0510-04		Flat washer (Accessory)
N15-1040-41		Flat washer (Acter
N15-1040-45		Flat washer (Accessory)
N15-1060-46		Spring wahser (Accessory)
N16-0040-4		Spring washer (Accessory)
N16-060-4		Ering
N24-3030-4		Hex. bolt (Accessory)
N99-0304-04		Hex. wrench (Accessory)
W01-0401-05		

PG-2Y External View

PG-2Y Dime sions

PG-2Y Parts List

Parts No.	New parts	Description
E30-3159-05		DC cord
F05-2531-05		Fuse (25A/32V)

MC-47 (MULTI FUNCTION MICROPHONE)

MC-47 External View

MC-47 Specifications

Electrical characteristics
Impedance $500 \Omega \pm 30 \%(1 \mathrm{kHz})$
Sensitivity $-78 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{~V} / \mu \mathrm{BAR}, 1000 \mathrm{~Hz})$ $-71 \mathrm{~dB} \pm 3 \mathrm{~dB}(1 \mathrm{kHz}, 0 \mathrm{~dB}=1 \mathrm{~V} / \mu \mathrm{BAR})$
Dimensions $53 \mathrm{~W} \times 81 \mathrm{H} \times 36 \mathrm{D}(\mathrm{mm})$
Weight \qquad 200g

MC-47 Parts List

Parts No.	New parts	Description
E30-3171-08		Curl cord
K29-4857-08		PF knob
S50-1406-05		Tact switch (UP, DOWN)
S70-0427-08		Tact switch (PF1~4)
S74-0403-08		Micro switch (PTT)
T91-0528-05		Microphone assy
T91-0540-08		Microphone element

MC-47 Schematic diagram

SPECIFICATIONS

Note
(*) : Menu selectable
Specifications are subject to change without notice or obligation due to ongoing technological developments.

KENWOOD CORPORATION
Alive Mitake, 2-5, Shibuya 1-chome. Shibuya-ku, Tokyo 150, Japan
KENWOOD SERVICE CORPORATION
P.O. BOX 22745, 2201 East Dominguez Street, Long Beach, CA $90801-5745$, U.S.A.

KENWOOD ELECTRONICS DEUTSCHLAND GMBH
Rembrücker Str. 15, 6056 Heusenstamm, Germany
KENWOOD ELECTRONICS BENELUX N.V.
Mechelsesteenweg 418 B-1930 Zaventem, Belgium
TRIO-KENWOOD FRANCE S.A.
13, Boulevard Ney, 75018 Paris, France
TRIO-KENWOOD U.K. LIMITED
KENWOOD House, Dwight Road, Watford, Herts., WD1 8EB United Kingdom
KENWOOD ELECTRONICS NEDERLAND B.V.
Amsterdamseweg 35, 1422 AC Uithoorn, The Netherlands
KENWOOD ELECTRONICS ITALIA S.p.A.
Via G. Sirtori, 7/9 20129 Milano, Italy
KENWOOD ESPAÑA S.A.
Bolivia, 239-08020 Barcelona, Spain
KENWOOD ELECTRONICS AUSTRALIA PTY. LTD.
(A.C.N. 001499 074)
P.O. Box 504, 8 Figtree Drive, Australia Centre, Homebush, N.S.W. 2140, Australia

KENWOOD \& LEE ELECTRONICS, LTD.
Unit 3712-3724, Level 37, Tower one Metroplaza, 223 Hing Fong Road, Kwai Fong, N.T., Hong Kong KENWOOD ELECTRONICS CANADA INC.
6070 Kestrel Road, Mississauga, Ontario, Canada L5T 1S8

